#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010-2018 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy. If not, see <http://www.gnu.org/licenses/>.
"""Shared utilities for correcting reflectance data using the 'crefl' algorithm.
The CREFL algorithm in this module is based on the `NASA CREFL SPA`_ software,
the `NASA CVIIRS SPA`_, and customizations of these algorithms for ABI/AHI by
Ralph Kuehn and Min Oo at the Space Science and Engineering Center (SSEC).
The CREFL SPA documentation page describes the algorithm by saying:
The CREFL_SPA processes MODIS Aqua and Terra Level 1B DB data to create the
MODIS Level 2 Corrected Reflectance product. The algorithm performs a simple
atmospheric correction with MODIS visible, near-infrared, and short-wave
infrared bands (bands 1 through 16).
It corrects for molecular (Rayleigh) scattering and gaseous absorption (water
vapor and ozone) using climatological values for gas contents. It requires no
real-time input of ancillary data. The algorithm performs no aerosol
correction. The Corrected Reflectance products created by CREFL_SPA are very
similar to the MODIS Land Surface Reflectance product (MOD09) in clear
atmospheric conditions, since the algorithms used to derive both are based on
the 6S Radiative Transfer Model. The products show differences in the presence
of aerosols, however, because the MODIS Land Surface Reflectance product uses
a more complex atmospheric correction algorithm that includes a correction for
aerosols.
The additional logic to support ABI (AHI support not included) was originally
written by Ralph Kuehn and Min Oo at SSEC. Additional modifications were
performed by Martin Raspaud, David Hoese, and Will Roberts to make the code
work together and be more dask compatible.
The AHI/ABI implementation is based on the MODIS collection 6 algorithm, where
a spherical-shell atmosphere was assumed rather than a plane-parallel. See
Appendix A in: "The Collection 6 MODIS aerosol products over land and ocean"
Atmos. Meas. Tech., 6, 2989–3034, 2013 www.atmos-meas-tech.net/6/2989/2013/
:doi:`10.5194/amt-6-2989-2013`.
The original CREFL code is similar to what is described in appendix A1 (page
74) of the ATBD for the `MODIS MOD04/MYD04`_ data product.
.. _NASA CREFL SPA: https://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=92&type=software
.. _NASA CVIIRS SPA: https://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=277&type=software
.. _MODIS MOD04/MYD04: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf
"""
from __future__ import annotations
import logging
from typing import Optional, Type, Union
import dask.array as da
import numpy as np
import xarray as xr
from satpy.dataset.dataid import WavelengthRange
LOG = logging.getLogger(__name__)
UO3_MODIS = 0.319
UH2O_MODIS = 2.93
UO3_VIIRS = 0.285
UH2O_VIIRS = 2.93
MAXSOLZ = 86.5
MAXAIRMASS = 18
SCALEHEIGHT = 8000
FILL_INT16 = 32767
TAUSTEP4SPHALB_ABI = .0003
TAUSTEP4SPHALB = .0001
MAXNUMSPHALBVALUES = 4000 # with no aerosol taur <= 0.4 in all bands everywhere
REFLMIN = -0.01
REFLMAX = 1.6
[docs]
class _Coefficients:
LUTS: list[np.ndarray] = []
# resolution -> wavelength -> coefficient index
# resolution -> band name -> coefficient index
COEFF_INDEX_MAP: dict[int, dict[Union[tuple, str], int]] = {}
def __init__(self, wavelength_range, resolution=0):
self._wv_range = wavelength_range
self._resolution = resolution
def __call__(self):
idx = self._find_coefficient_index(self._wv_range, resolution=self._resolution)
band_luts = [lut_array[idx] for lut_array in self.LUTS]
return band_luts
[docs]
def _find_coefficient_index(self, wavelength_range, resolution=0):
"""Return index in to coefficient arrays for this band's wavelength.
This function search through the `COEFF_INDEX_MAP` dictionary and
finds the first key where the nominal wavelength of `wavelength_range`
falls between the minimum wavelength and maximum wavelength of the key.
`wavelength_range` can also be the standard name of the band. For
example, "M05" for VIIRS or "1" for MODIS.
Args:
wavelength_range: 3-element tuple of
(min wavelength, nominal wavelength, max wavelength) or the
string name of the band.
resolution: resolution of the band to be corrected
Returns:
index in to coefficient arrays like `aH2O`, `aO3`, etc.
None is returned if no matching wavelength is found
"""
index_map = self.COEFF_INDEX_MAP
# Find the best resolution of coefficients
for res in sorted(index_map.keys()):
if resolution <= res:
index_map = index_map[res]
break
else:
raise ValueError("Unrecognized data resolution: {}", resolution)
# Find the best wavelength of coefficients
if isinstance(wavelength_range, str):
# wavelength range is actually a band name
return index_map[wavelength_range]
for lut_wvl_range, v in index_map.items():
if isinstance(lut_wvl_range, str):
# we are analyzing wavelengths and ignoring dataset names
continue
if wavelength_range[1] in lut_wvl_range:
return v
raise ValueError(f"Can't find LUT for {wavelength_range}.")
[docs]
class _ABICoefficients(_Coefficients):
RG_FUDGE = .55 # This number is what Ralph says "looks good" for ABI/AHI
LUTS = [
# aH2O
np.array([2.4111e-003, 7.8454e-003 * RG_FUDGE, 7.9258e-3, 9.3392e-003, 2.53e-2]),
# aO2 (bH2O for other instruments)
np.array([1.2360e-003, 3.7296e-003, 177.7161e-006, 10.4899e-003, 1.63e-2]),
# aO3
np.array([4.2869e-003, 25.6509e-003 * RG_FUDGE, 802.4319e-006, 0.0000e+000, 2e-5]),
# taur0
np.array([184.7200e-003, 52.3490e-003, 15.8450e-003, 1.3074e-003, 311.2900e-006]),
]
# resolution -> wavelength -> coefficient index
# resolution -> band name -> coefficient index
COEFF_INDEX_MAP = {
2000: {
WavelengthRange(0.450, 0.470, 0.490): 0, # C01
"C01": 0,
WavelengthRange(0.590, 0.640, 0.690): 1, # C02
"C02": 1,
WavelengthRange(0.8455, 0.865, 0.8845): 2, # C03
"C03": 2,
# WavelengthRange((1.3705, 1.378, 1.3855)): None, # C04 - No coefficients yet
# "C04": None,
WavelengthRange(1.580, 1.610, 1.640): 3, # C05
"C05": 3,
WavelengthRange(2.225, 2.250, 2.275): 4, # C06
"C06": 4
},
}
[docs]
class _VIIRSCoefficients(_Coefficients):
# Values from crefl 1.7.1
LUTS = [
# aH2O
np.array([0.000406601, 0.0015933, 0, 1.78644e-05, 0.00296457, 0.000617252, 0.000996563, 0.00222253, 0.00094005,
0.000563288, 0, 0, 0, 0, 0, 0]),
# bH2O
np.array([0.812659, 0.832931, 1., 0.8677850, 0.806816, 0.944958, 0.78812, 0.791204, 0.900564, 0.942907, 0, 0,
0, 0, 0, 0]),
# aO3
np.array([0.0433461, 0.0, 0.0178299, 0.0853012, 0, 0, 0, 0.0813531, 0, 0, 0.0663, 0.0836, 0.0485, 0.0395,
0.0119, 0.00263]),
# taur0
np.array([0.04350, 0.01582, 0.16176, 0.09740, 0.00369, 0.00132, 0.00033, 0.05373, 0.01561, 0.00129, 0.1131,
0.0994, 0.0446, 0.0416, 0.0286, 0.0155]),
]
# resolution -> wavelength -> coefficient index
# resolution -> band name -> coefficient index
COEFF_INDEX_MAP = {
1000: {
WavelengthRange(0.662, 0.6720, 0.682): 0, # M05
"M05": 0,
WavelengthRange(0.846, 0.8650, 0.885): 1, # M07
"M07": 1,
WavelengthRange(0.478, 0.4880, 0.498): 2, # M03
"M03": 2,
WavelengthRange(0.545, 0.5550, 0.565): 3, # M04
"M04": 3,
WavelengthRange(1.230, 1.2400, 1.250): 4, # M08
"M08": 4,
WavelengthRange(1.580, 1.6100, 1.640): 5, # M10
"M10": 5,
WavelengthRange(2.225, 2.2500, 2.275): 6, # M11
"M11": 6,
},
500: {
WavelengthRange(0.600, 0.6400, 0.680): 7, # I01
"I01": 7,
WavelengthRange(0.845, 0.8650, 0.884): 8, # I02
"I02": 8,
WavelengthRange(1.580, 1.6100, 1.640): 9, # I03
"I03": 9,
},
}
[docs]
class _MODISCoefficients(_Coefficients):
# Values from crefl 1.7.1
LUTS = [
# aH2O
np.array([-5.60723, -5.25251, 0, 0, -6.29824, -7.70944, -3.91877, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
# bH2O
np.array([0.820175, 0.725159, 0, 0, 0.865732, 0.966947, 0.745342, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
# aO3
np.array([0.0715289, 0, 0.00743232, 0.089691, 0, 0, 0, 0.001, 0.00383, 0.0225, 0.0663,
0.0836, 0.0485, 0.0395, 0.0119, 0.00263]),
# taur0
np.array([0.05100, 0.01631, 0.19325, 0.09536, 0.00366, 0.00123, 0.00043, 0.3139, 0.2375, 0.1596, 0.1131,
0.0994, 0.0446, 0.0416, 0.0286, 0.0155]),
]
# Map of pixel resolutions -> wavelength -> coefficient index
# Map of pixel resolutions -> band name -> coefficient index
COEFF_INDEX_MAP = {
1000: {
WavelengthRange(0.620, 0.6450, 0.670): 0,
"1": 0,
WavelengthRange(0.841, 0.8585, 0.876): 1,
"2": 1,
WavelengthRange(0.459, 0.4690, 0.479): 2,
"3": 2,
WavelengthRange(0.545, 0.5550, 0.565): 3,
"4": 3,
WavelengthRange(1.230, 1.2400, 1.250): 4,
"5": 4,
WavelengthRange(1.628, 1.6400, 1.652): 5,
"6": 5,
WavelengthRange(2.105, 2.1300, 2.155): 6,
"7": 6,
}
}
COEFF_INDEX_MAP[500] = COEFF_INDEX_MAP[1000]
COEFF_INDEX_MAP[250] = COEFF_INDEX_MAP[1000]
[docs]
def run_crefl(refl,
sensor_azimuth,
sensor_zenith,
solar_azimuth,
solar_zenith,
avg_elevation=None,
):
"""Run main crefl algorithm.
All input parameters are per-pixel values meaning they are the same size
and shape as the input reflectance data, unless otherwise stated.
:param refl: tuple of reflectance band arrays
:param sensor_azimuth: input swath sensor azimuth angle array
:param sensor_zenith: input swath sensor zenith angle array
:param solar_azimuth: input swath solar azimuth angle array
:param solar_zenith: input swath solar zenith angle array
:param avg_elevation: average elevation (usually pre-calculated and stored in CMGDEM.hdf)
"""
runner_cls = _runner_class_for_sensor(refl.attrs['sensor'])
runner = runner_cls(refl)
corr_refl = runner(sensor_azimuth, sensor_zenith, solar_azimuth, solar_zenith, avg_elevation)
return corr_refl
[docs]
class _CREFLRunner:
def __init__(self, refl_data_arr):
self._is_percent = refl_data_arr.attrs["units"] == "%"
if self._is_percent:
attrs = refl_data_arr.attrs
refl_data_arr = refl_data_arr / 100.0
refl_data_arr.attrs = attrs
self._refl = refl_data_arr
@property
def coeffs_cls(self) -> Type[_Coefficients]:
raise NotImplementedError()
def __call__(self, sensor_azimuth, sensor_zenith, solar_azimuth, solar_zenith, avg_elevation):
refl = self._refl
height = self._height_from_avg_elevation(avg_elevation)
coeffs_helper = self.coeffs_cls(refl.attrs["wavelength"], refl.attrs["resolution"])
coeffs = coeffs_helper()
mus = np.cos(np.deg2rad(solar_zenith))
mus = mus.where(mus >= 0)
muv = np.cos(np.deg2rad(sensor_zenith))
phi = solar_azimuth - sensor_azimuth
corr_refl = self._run_crefl(mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs)
if self._is_percent:
corr_refl = corr_refl * 100.0
return xr.DataArray(corr_refl, dims=refl.dims, coords=refl.coords, attrs=refl.attrs)
[docs]
def _run_crefl(self, mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs):
raise NotImplementedError()
[docs]
def _height_from_avg_elevation(self, avg_elevation: Optional[np.ndarray]) -> da.Array:
"""Get digital elevation map data for our granule with ocean fill value set to 0."""
if avg_elevation is None:
LOG.debug("No average elevation information provided in CREFL")
# height = np.zeros(lon.shape, dtype=np.float64)
height = 0.
else:
LOG.debug("Using average elevation information provided to CREFL")
lon, lat = self._refl.attrs['area'].get_lonlats(chunks=self._refl.chunks)
height = da.map_blocks(_space_mask_height, lon, lat, avg_elevation,
chunks=lon.chunks, dtype=avg_elevation.dtype)
return height
[docs]
class _ABICREFLRunner(_CREFLRunner):
@property
def coeffs_cls(self) -> Type[_Coefficients]:
return _ABICoefficients
[docs]
def _run_crefl(self, mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs):
LOG.debug("Using ABI CREFL algorithm")
return da.map_blocks(_run_crefl_abi, self._refl.data, mus.data, muv.data, phi.data,
solar_zenith.data, sensor_zenith.data, height, *coeffs,
meta=np.ndarray((), dtype=self._refl.dtype),
chunks=self._refl.chunks, dtype=self._refl.dtype,
)
[docs]
class _VIIRSMODISCREFLRunner(_CREFLRunner):
[docs]
def _run_crefl(self, mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs):
return da.map_blocks(_run_crefl, self._refl.data, mus.data, muv.data, phi.data,
height, self._refl.attrs.get("sensor"), *coeffs,
meta=np.ndarray((), dtype=self._refl.dtype),
chunks=self._refl.chunks, dtype=self._refl.dtype,
)
[docs]
class _VIIRSCREFLRunner(_VIIRSMODISCREFLRunner):
@property
def coeffs_cls(self) -> Type[_Coefficients]:
return _VIIRSCoefficients
[docs]
def _run_crefl(self, mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs):
LOG.debug("Using VIIRS CREFL algorithm")
return super()._run_crefl(mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs)
[docs]
class _MODISCREFLRunner(_VIIRSMODISCREFLRunner):
@property
def coeffs_cls(self) -> Type[_Coefficients]:
return _MODISCoefficients
[docs]
def _run_crefl(self, mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs):
LOG.debug("Using MODIS CREFL algorithm")
return super()._run_crefl(mus, muv, phi, solar_zenith, sensor_zenith, height, coeffs)
_SENSOR_TO_RUNNER = {
"abi": _ABICREFLRunner,
"viirs": _VIIRSCREFLRunner,
"modis": _MODISCREFLRunner,
}
[docs]
def _runner_class_for_sensor(sensor_name: str) -> Type[_CREFLRunner]:
try:
return _SENSOR_TO_RUNNER[sensor_name]
except KeyError:
raise NotImplementedError(f"Don't know how to apply CREFL to data from sensor {sensor_name}.")
[docs]
def _space_mask_height(lon, lat, avg_elevation):
lat[(lat <= -90) | (lat >= 90)] = np.nan
lon[(lon <= -180) | (lon >= 180)] = np.nan
row = ((90.0 - lat) * avg_elevation.shape[0] / 180.0).astype(np.int32)
col = ((lon + 180.0) * avg_elevation.shape[1] / 360.0).astype(np.int32)
space_mask = np.isnan(lon) | np.isnan(lat)
row[space_mask] = 0
col[space_mask] = 0
height = avg_elevation[row, col]
# negative heights aren't allowed, clip to 0
height[(height < 0.0) | np.isnan(height) | space_mask] = 0.0
return height
[docs]
def _run_crefl(refl, mus, muv, phi, height, sensor_name, *coeffs):
atm_vars_cls = _VIIRSAtmosphereVariables if sensor_name.lower() == "viirs" else _MODISAtmosphereVariables
atm_vars = atm_vars_cls(mus, muv, phi, height, *coeffs)
sphalb, rhoray, TtotraytH2O, tOG = atm_vars()
return _correct_refl(refl, tOG, rhoray, TtotraytH2O, sphalb)
[docs]
def _run_crefl_abi(refl, mus, muv, phi, solar_zenith, sensor_zenith, height,
*coeffs):
a_O3 = [268.45, 0.5, 115.42, -3.2922]
a_H2O = [0.0311, 0.1, 92.471, -1.3814]
a_O2 = [0.4567, 0.007, 96.4884, -1.6970]
G_O3 = _G_calc(solar_zenith, a_O3) + _G_calc(sensor_zenith, a_O3)
G_H2O = _G_calc(solar_zenith, a_H2O) + _G_calc(sensor_zenith, a_H2O)
G_O2 = _G_calc(solar_zenith, a_O2) + _G_calc(sensor_zenith, a_O2)
# Note: bh2o values are actually ao2 values for abi
atm_vars = _ABIAtmosphereVariables(G_O3, G_H2O, G_O2,
mus, muv, phi, height, *coeffs)
sphalb, rhoray, TtotraytH2O, tOG = atm_vars()
return _correct_refl(refl, tOG, rhoray, TtotraytH2O, sphalb)
[docs]
def _G_calc(zenith, a_coeff):
return (np.cos(np.deg2rad(zenith))+(a_coeff[0]*(zenith**a_coeff[1])*(a_coeff[2]-zenith)**a_coeff[3]))**-1
[docs]
def _correct_refl(refl, tOG, rhoray, TtotraytH2O, sphalb):
corr_refl = (refl / tOG - rhoray) / TtotraytH2O
corr_refl /= (1.0 + corr_refl * sphalb)
return corr_refl.clip(REFLMIN, REFLMAX)
[docs]
class _AtmosphereVariables:
def __init__(self, mus, muv, phi, height, ah2o, bh2o, ao3, tau):
self._mus = mus
self._muv = muv
self._phi = phi
self._height = height
self._ah2o = ah2o
self._bh2o = bh2o
self._ao3 = ao3
self._tau = tau
self._taustep4sphalb = TAUSTEP4SPHALB
def __call__(self):
tau_step = np.linspace(
self._taustep4sphalb,
MAXNUMSPHALBVALUES * self._taustep4sphalb,
MAXNUMSPHALBVALUES)
sphalb0 = _csalbr(tau_step)
taur = self._tau * np.exp(-self._height / SCALEHEIGHT)
rhoray, trdown, trup = _chand(self._phi, self._muv, self._mus, taur)
sphalb = sphalb0[(taur / self._taustep4sphalb + 0.5).astype(np.int32)]
Ttotrayu = ((2 / 3. + self._muv) + (2 / 3. - self._muv) * trup) / (4 / 3. + taur)
Ttotrayd = ((2 / 3. + self._mus) + (2 / 3. - self._mus) * trdown) / (4 / 3. + taur)
tH2O = self._get_th2o()
TtotraytH2O = Ttotrayu * Ttotrayd * tH2O
tO2 = self._get_to2()
tO3 = self._get_to3()
tOG = tO3 * tO2
return sphalb, rhoray, TtotraytH2O, tOG
[docs]
def _get_to2(self):
return 1.0
[docs]
def _get_to3(self):
raise NotImplementedError()
[docs]
def _get_th2o(self):
raise NotImplementedError()
[docs]
class _ABIAtmosphereVariables(_AtmosphereVariables):
def __init__(self, G_O3, G_H2O, G_O2, *args):
super().__init__(*args)
self._G_O3 = G_O3
self._G_H2O = G_H2O
self._G_O2 = G_O2
self._taustep4sphalb = TAUSTEP4SPHALB_ABI
[docs]
def _get_to2(self):
# NOTE: bh2o is actually ao2 for ABI
return np.exp(-self._G_O2 * self._bh2o)
[docs]
def _get_to3(self):
return np.exp(-self._G_O3 * self._ao3) if self._ao3 != 0 else 1.0
[docs]
def _get_th2o(self):
return np.exp(-self._G_H2O * self._ah2o) if self._ah2o != 0 else 1.0
[docs]
class _VIIRSAtmosphereVariables(_AtmosphereVariables):
def __init__(self, *args):
super().__init__(*args)
self._airmass = self._compute_airmass()
[docs]
def _compute_airmass(self):
air_mass = 1.0 / self._mus + 1 / self._muv
air_mass[air_mass > MAXAIRMASS] = -1.0
return air_mass
[docs]
def _get_to3(self):
if self._ao3 == 0:
return 1.0
return np.exp(-self._airmass * UO3_VIIRS * self._ao3)
[docs]
def _get_th2o(self):
if self._bh2o == 0:
return 1.0
return np.exp(-(self._ah2o * ((self._airmass * UH2O_VIIRS) ** self._bh2o)))
[docs]
class _MODISAtmosphereVariables(_VIIRSAtmosphereVariables):
[docs]
def _get_to3(self):
if self._ao3 == 0:
return 1.0
return np.exp(-self._airmass * UO3_MODIS * self._ao3)
[docs]
def _get_th2o(self):
if self._bh2o == 0:
return 1.0
return np.exp(-np.exp(self._ah2o + self._bh2o * np.log(self._airmass * UH2O_MODIS)))
[docs]
def _csalbr(tau):
# Previously 3 functions csalbr fintexp1, fintexp3
a = [-.57721566, 0.99999193, -0.24991055, 0.05519968, -0.00976004,
0.00107857]
# xx = a[0] + a[1] * tau + a[2] * tau**2 + a[3] * tau**3 + a[4] * tau**4 + a[5] * tau**5
# xx = np.polyval(a[::-1], tau)
# xx = a[0]
# xftau = 1.0
# for i in xrange(5):
# xftau = xftau*tau
# xx = xx + a[i] * xftau
fintexp1 = np.polyval(a[::-1], tau) - np.log(tau)
fintexp3 = (np.exp(-tau) * (1.0 - tau) + tau**2 * fintexp1) / 2.0
return (3.0 * tau - fintexp3 *
(4.0 + 2.0 * tau) + 2.0 * np.exp(-tau)) / (4.0 + 3.0 * tau)
[docs]
def _chand(phi, muv, mus, taur):
# FROM FUNCTION CHAND
# phi: azimuthal difference between sun and observation in degree
# (phi=0 in backscattering direction)
# mus: cosine of the sun zenith angle
# muv: cosine of the observation zenith angle
# taur: molecular optical depth
# rhoray: molecular path reflectance
# constant xdep: depolarization factor (0.0279)
# xfd = (1-xdep/(2-xdep)) / (1 + 2*xdep/(2-xdep)) = 2 * (1 - xdep) / (2 + xdep) = 0.958725775
# */
xfd = 0.958725775
xbeta2 = 0.5
# float pl[5];
# double fs01, fs02, fs0, fs1, fs2;
as0 = [0.33243832, 0.16285370, -0.30924818, -0.10324388, 0.11493334,
-6.777104e-02, 1.577425e-03, -1.240906e-02, 3.241678e-02,
-3.503695e-02]
as1 = [0.19666292, -5.439061e-02]
as2 = [0.14545937, -2.910845e-02]
# float phios, xcos1, xcos2, xcos3;
# float xph1, xph2, xph3, xitm1, xitm2;
# float xlntaur, xitot1, xitot2, xitot3;
# int i, ib;
xph1 = 1.0 + (3.0 * mus * mus - 1.0) * (3.0 * muv * muv - 1.0) * xfd / 8.0
xph2 = -xfd * xbeta2 * 1.5 * mus * muv * np.sqrt(
1.0 - mus * mus) * np.sqrt(1.0 - muv * muv)
xph3 = xfd * xbeta2 * 0.375 * (1.0 - mus * mus) * (1.0 - muv * muv)
# pl[0] = 1.0
# pl[1] = mus + muv
# pl[2] = mus * muv
# pl[3] = mus * mus + muv * muv
# pl[4] = mus * mus * muv * muv
fs01 = as0[0] + (mus + muv) * as0[1] + (mus * muv) * as0[2] + (
mus * mus + muv * muv) * as0[3] + (mus * mus * muv * muv) * as0[4]
fs02 = as0[5] + (mus + muv) * as0[6] + (mus * muv) * as0[7] + (
mus * mus + muv * muv) * as0[8] + (mus * mus * muv * muv) * as0[9]
# for (i = 0; i < 5; i++) {
# fs01 += (double) (pl[i] * as0[i]);
# fs02 += (double) (pl[i] * as0[5 + i]);
# }
# for refl, (ah2o, bh2o, ao3, tau) in zip(reflectance_bands, coefficients):
# ib = _find_coefficient_index(center_wl)
# if ib is None:
# raise ValueError("Can't handle band with wavelength '{}'".format(center_wl))
xlntaur = np.log(taur)
fs0 = fs01 + fs02 * xlntaur
fs1 = as1[0] + xlntaur * as1[1]
fs2 = as2[0] + xlntaur * as2[1]
del xlntaur, fs01, fs02
trdown = np.exp(-taur / mus)
trup = np.exp(-taur / muv)
xitm1 = (1.0 - trdown * trup) / 4.0 / (mus + muv)
xitm2 = (1.0 - trdown) * (1.0 - trup)
xitot1 = xph1 * (xitm1 + xitm2 * fs0)
xitot2 = xph2 * (xitm1 + xitm2 * fs1)
xitot3 = xph3 * (xitm1 + xitm2 * fs2)
del xph1, xph2, xph3, xitm1, xitm2, fs0, fs1, fs2
phios = np.deg2rad(phi + 180.0)
xcos1 = 1.0
xcos2 = np.cos(phios)
xcos3 = np.cos(2.0 * phios)
del phios
rhoray = xitot1 * xcos1 + xitot2 * xcos2 * 2.0 + xitot3 * xcos3 * 2.0
return rhoray, trdown, trup