Source code for satpy.tests.reader_tests.test_agri_l1

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2019 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.
"""The agri_l1 reader tests package."""

import os
from unittest import mock

import dask.array as da
import numpy as np
import pytest
import xarray as xr

from satpy.tests.reader_tests.test_hdf5_utils import FakeHDF5FileHandler

ALL_BAND_NAMES = ["C01", "C02", "C03", "C04", "C05", "C06", "C07",
                  "C08", "C09", "C10", "C11", "C12", "C13", "C14"]

CHANNELS_BY_RESOLUTION = {500: ["C02"],
                          1000: ["C01", "C02", "C03"],
                          2000: ["C01", "C02", "C03", "C04", "C05", "C06", "C07"],
                          4000: ALL_BAND_NAMES,
                          "GEO": "solar_azimuth_angle"
                          }

RESOLUTION_LIST = [500, 1000, 2000, 4000]

AREA_EXTENTS_BY_RESOLUTION = {"FY4A": {
    500: (-5496021.008869, 5495021.005046, -5493520.999312, 5496021.008869),
    1000: (-5496021.076004, 5494021.068334, -5491021.05683, 5496021.076004),
    2000: (-5496021.210274, 5492021.194837, -5486021.171682, 5496021.210274),
    4000: (-5496021.210274, 5488021.1794, -5476021.13309, 5496021.210274)
},
    "FY4B": {
        500: (-5496021.008869, 5495021.005046, -5493520.999312, 5496021.008869),
        1000: (-5496021.076004, 5494021.068334, -5491021.05683, 5496021.076004),
        2000: (-5496021.210274, 5492021.194837, -5486021.171682, 5496021.210274),
        4000: (-5496021.210274, 5488021.1794, -5476021.13309, 5496021.210274)
    }}


[docs] class FakeHDF5FileHandler2(FakeHDF5FileHandler): """Swap-in HDF5 File Handler."""
[docs] def make_test_data(self, cwl, ch, prefix, dims, file_type): """Make test data.""" if prefix == "CAL": data = xr.DataArray( da.from_array((np.arange(10.) + 1.) / 10., [dims[0] * dims[1]]), attrs={ "Slope": np.array(1.), "Intercept": np.array(0.), "FillValue": np.array(-65535.0), "units": "NUL", "center_wavelength": "{}um".format(cwl).encode("utf-8"), "band_names": "band{}(band number is range from 1 to 14)" .format(ch).encode("utf-8"), "long_name": "Calibration table of {}um Channel".format(cwl).encode("utf-8"), "valid_range": np.array([0, 1.5]), }, dims="_const") elif prefix == "NOM": data = xr.DataArray( da.from_array(np.arange(10, dtype=np.uint16).reshape((2, 5)) + 1, [dim for dim in dims]), attrs={ "Slope": np.array(1.), "Intercept": np.array(0.), "FillValue": np.array(65535), "units": "DN", "center_wavelength": "{}um".format(cwl).encode("utf-8"), "band_names": "band{}(band number is range from 1 to 14)" .format(ch).encode("utf-8"), "long_name": "Calibration table of {}um Channel".format(cwl).encode("utf-8"), "valid_range": np.array([0, 4095]), }, dims=("_RegLength", "_RegWidth")) elif prefix == "GEO": data = xr.DataArray( da.from_array(np.arange(0., 360., 36., dtype=np.float32).reshape((2, 5)), [dim for dim in dims]), attrs={ "Slope": np.array(1.), "Intercept": np.array(0.), "FillValue": np.array(65535.), "units": "NUL", "band_names": "NUL", "valid_range": np.array([0., 360.]), }, dims=("_RegLength", "_RegWidth")) elif prefix == "COEF": if file_type == "500": data = self._create_coeff_array(1) elif file_type == "1000": data = self._create_coeff_array(3) elif file_type == "2000": data = self._create_coeff_array(7) elif file_type == "4000": data = self._create_coeff_array(14) return data
[docs] def _create_coeff_array(self, nb_channels): data = xr.DataArray( da.from_array((np.arange(nb_channels * 2).reshape((nb_channels, 2)) + 1.) / np.array([1E4, 1E2]), [nb_channels, 2]), attrs={ "Slope": 1., "Intercept": 0., "FillValue": 0, "units": "NUL", "band_names": "NUL", "long_name": b"Calibration coefficient (SCALE and OFFSET)", "valid_range": [-500, 500], }, dims=("_num_channel", "_coefs")) return data
[docs] def _create_channel_data(self, chs, cwls, file_type): dim_0 = 2 dim_1 = 5 data = {} for index, _cwl in enumerate(cwls): data["CALChannel" + "%02d" % chs[index]] = self.make_test_data(cwls[index], chs[index], "CAL", [dim_0, dim_1], file_type) data["Calibration/CALChannel" + "%02d" % chs[index]] = self.make_test_data(cwls[index], chs[index], "CAL", [dim_0, dim_1], file_type) data["NOMChannel" + "%02d" % chs[index]] = self.make_test_data(cwls[index], chs[index], "NOM", [dim_0, dim_1], file_type) data["Data/NOMChannel" + "%02d" % chs[index]] = self.make_test_data(cwls[index], chs[index], "NOM", [dim_0, dim_1], file_type) data["CALIBRATION_COEF(SCALE+OFFSET)"] = self.make_test_data(cwls[index], chs[index], "COEF", [dim_0, dim_1], file_type) data["Calibration/CALIBRATION_COEF(SCALE+OFFSET)"] = self.make_test_data(cwls[index], chs[index], "COEF", [dim_0, dim_1], file_type) return data
[docs] def _get_500m_data(self, file_type): chs = [2] cwls = [0.65] data = self._create_channel_data(chs, cwls, file_type) return data
[docs] def _get_1km_data(self, file_type): chs = np.linspace(1, 3, 3) cwls = [0.47, 0.65, 0.83] data = self._create_channel_data(chs, cwls, file_type) return data
[docs] def _get_2km_data(self, file_type): chs = np.linspace(1, 7, 7) cwls = [0.47, 0.65, 0.83, 1.37, 1.61, 2.22, 3.72] data = self._create_channel_data(chs, cwls, file_type) return data
[docs] def _get_4km_data(self, file_type): chs = np.linspace(1, 14, 14) cwls = [0.47, 0.65, 0.83, 1.37, 1.61, 2.22, 3.72, 3.72, 6.25, 7.10, 8.50, 10.8, 12, 13.5] data = self._create_channel_data(chs, cwls, file_type) return data
[docs] def _get_geo_data(self, file_type): dim_0 = 2 dim_1 = 5 data = {"NOMSunAzimuth": self.make_test_data("NUL", "NUL", "GEO", [dim_0, dim_1], file_type), "Navigation/NOMSunAzimuth": self.make_test_data("NUL", "NUL", "GEO", [dim_0, dim_1], file_type)} return data
[docs] def get_test_content(self, filename, filename_info, filetype_info): """Mimic reader input file content.""" global_attrs = { "/attr/NOMCenterLat": np.array(0.0), "/attr/NOMCenterLon": np.array(104.7), "/attr/NOMSatHeight": np.array(42164140.0), "/attr/dEA": np.array(6378.14), "/attr/dObRecFlat": np.array(298.257223563), "/attr/OBIType": "REGC", "/attr/RegLength": np.array(2.0), "/attr/RegWidth": np.array(5.0), "/attr/Begin Line Number": np.array(0), "/attr/End Line Number": np.array(1), "/attr/Begin Pixel Number": np.array(0), "/attr/End Pixel Number": np.array(1), "/attr/Observing Beginning Date": "2019-06-03", "/attr/Observing Beginning Time": "00:30:01.807", "/attr/Observing Ending Date": "2019-06-03", "/attr/Observing Ending Time": "00:34:07.572", "/attr/Satellite Name": "FY4A", "/attr/Sensor Identification Code": "AGRI", "/attr/Sensor Name": "AGRI", } data = {} if self.filetype_info["file_type"] == "agri_l1_0500m": data = self._get_500m_data("500") elif self.filetype_info["file_type"] == "agri_l1_1000m": data = self._get_1km_data("1000") elif self.filetype_info["file_type"] == "agri_l1_2000m": data = self._get_2km_data("2000") global_attrs["/attr/Observing Beginning Time"] = "00:30:01" global_attrs["/attr/Observing Ending Time"] = "00:34:07" elif self.filetype_info["file_type"] == "agri_l1_4000m": data = self._get_4km_data("4000") elif self.filetype_info["file_type"] == "agri_l1_4000m_geo": data = self._get_geo_data("4000") test_content = {} test_content.update(global_attrs) test_content.update(data) return test_content
[docs] def _create_filenames_from_resolutions(satname, *resolutions): """Create filenames from the given resolutions.""" if "GEO" in resolutions: return [f"{satname}-_AGRI--_N_REGC_1047E_L1-_GEO-_MULT_NOM_20190603003000_20190603003416_4000M_V0001.HDF"] pattern = (f"{satname}-_AGRI--_N_REGC_1047E_L1-_FDI-_MULT_NOM_20190603003000_20190603003416_" "{resolution:04d}M_V0001.HDF") return [pattern.format(resolution=resolution) for resolution in resolutions]
[docs] class Test_HDF_AGRI_L1_cal: """Test VIRR L1B Reader.""" yaml_file = "agri_fy4a_l1.yaml"
[docs] def setup_method(self): """Wrap HDF5 file handler with our own fake handler.""" from satpy._config import config_search_paths from satpy.readers.agri_l1 import HDF_AGRI_L1 from satpy.readers.fy4_base import FY4Base self.reader_configs = config_search_paths(os.path.join("readers", self.yaml_file)) # http://stackoverflow.com/questions/12219967/how-to-mock-a-base-class-with-python-mock-library self.fy4 = mock.patch.object(FY4Base, "__bases__", (FakeHDF5FileHandler2,)) self.p = mock.patch.object(HDF_AGRI_L1.__class__, (self.fy4,)) self.fake_handler = self.fy4.start() self.p.is_local = True self.satname = "FY4A" self.expected = { 1: np.array([[2.01, 2.02, 2.03, 2.04, 2.05], [2.06, 2.07, 2.08, 2.09, 2.1]]), 2: np.array([[4.03, 4.06, 4.09, 4.12, 4.15], [4.18, 4.21, 4.24, 4.27, 4.3]]), 3: np.array([[6.05, 6.1, 6.15, 6.2, 6.25], [6.3, 6.35, 6.4, 6.45, 6.5]]), 4: np.array([[8.07, 8.14, 8.21, 8.28, 8.35], [8.42, 8.49, 8.56, 8.63, 8.7]]), 5: np.array([[10.09, 10.18, 10.27, 10.36, 10.45], [10.54, 10.63, 10.72, 10.81, 10.9]]), 6: np.array([[12.11, 12.22, 12.33, 12.44, 12.55], [12.66, 12.77, 12.88, 12.99, 13.1]]), 7: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 8: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 9: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 10: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 11: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 12: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 13: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]), 14: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]) }
[docs] def teardown_method(self): """Stop wrapping the HDF5 file handler.""" self.p.stop()
[docs] def test_times_correct(self): """Test that the reader handles the two possible time formats correctly.""" reader = self._create_reader_for_resolutions(1000) np.testing.assert_almost_equal(reader.start_time.microsecond, 807000) reader = self._create_reader_for_resolutions(2000) np.testing.assert_almost_equal(reader.start_time.microsecond, 0)
[docs] def test_fy4a_channels_are_loaded_with_right_resolution(self): """Test all channels are loaded with the right resolution.""" reader = self._create_reader_for_resolutions(*RESOLUTION_LIST) available_datasets = reader.available_dataset_ids for resolution_to_test in RESOLUTION_LIST: self._check_keys_for_dsq(available_datasets, resolution_to_test)
[docs] def test_agri_all_bands_have_right_units(self): """Test all bands have the right units.""" reader = self._create_reader_for_resolutions(*RESOLUTION_LIST) band_names = ALL_BAND_NAMES res = reader.load(band_names) assert len(res) == 14 for band_name in band_names: assert res[band_name].shape == (2, 5) self._check_units(band_name, res)
[docs] def test_agri_orbital_parameters_are_correct(self): """Test orbital parameters are set correctly.""" reader = self._create_reader_for_resolutions(*RESOLUTION_LIST) band_names = ALL_BAND_NAMES res = reader.load(band_names) # check whether the data type of orbital_parameters is float orbital_parameters = res[band_names[0]].attrs["orbital_parameters"] for attr in orbital_parameters: assert isinstance(orbital_parameters[attr], float) assert orbital_parameters["satellite_nominal_latitude"] == 0. assert orbital_parameters["satellite_nominal_longitude"] == 104.7 assert orbital_parameters["satellite_nominal_altitude"] == 42164140.0
[docs] @staticmethod def _check_keys_for_dsq(available_datasets, resolution_to_test): from satpy.dataset.data_dict import get_key from satpy.tests.utils import make_dsq band_names = CHANNELS_BY_RESOLUTION[resolution_to_test] for band_name in band_names: ds_q = make_dsq(name=band_name, resolution=resolution_to_test) res = get_key(ds_q, available_datasets, num_results=0, best=False) if band_name < "C07": assert len(res) == 2 else: assert len(res) == 3
[docs] def test_agri_counts_calibration(self): """Test loading data at counts calibration.""" from satpy.tests.utils import make_dsq reader = self._create_reader_for_resolutions(*RESOLUTION_LIST) ds_ids = [] band_names = CHANNELS_BY_RESOLUTION[4000] for band_name in band_names: ds_ids.append(make_dsq(name=band_name, calibration="counts")) res = reader.load(ds_ids) assert len(res) == 14 for band_name in band_names: assert res[band_name].shape == (2, 5) assert res[band_name].attrs["calibration"] == "counts" assert res[band_name].dtype == np.uint16 assert res[band_name].attrs["units"] == "1"
[docs] @pytest.mark.parametrize("satname", ["FY4A", "FY4B"]) def test_agri_geo(self, satname): """Test loading data for angles.""" from satpy.tests.utils import make_dsq self.satname = satname reader = self._create_reader_for_resolutions("GEO") band_name = "solar_azimuth_angle" ds_ids = [make_dsq(name=band_name)] res = reader.load(ds_ids) assert len(res) == 1 np.testing.assert_almost_equal(np.nanmin(res[band_name]), 0.) np.testing.assert_almost_equal(np.nanmax(res[band_name]), 324.) assert res[band_name].shape == (2, 5) assert res[band_name].dtype == np.float32
[docs] def _create_reader_for_resolutions(self, *resolutions): from satpy.readers import load_reader filenames = _create_filenames_from_resolutions(self.satname, *resolutions) reader = load_reader(self.reader_configs) files = reader.select_files_from_pathnames(filenames) assert len(filenames) == len(files) reader.create_filehandlers(files) # Make sure we have some files assert reader.file_handlers return reader
[docs] @pytest.mark.parametrize("resolution_to_test", RESOLUTION_LIST) @pytest.mark.parametrize("satname", ["FY4A", "FY4B"]) def test_agri_for_one_resolution(self, resolution_to_test, satname): """Test loading data when only one resolution is available.""" self.satname = satname reader = self._create_reader_for_resolutions(resolution_to_test) available_datasets = reader.available_dataset_ids band_names = CHANNELS_BY_RESOLUTION[resolution_to_test] self._assert_which_channels_are_loaded(available_datasets, band_names, resolution_to_test) res = reader.load(band_names) assert len(res) == len(band_names) self._check_calibration_and_units(band_names, res) for band_name in band_names: np.testing.assert_allclose(res[band_name].attrs["area"].area_extent, AREA_EXTENTS_BY_RESOLUTION[satname][resolution_to_test])
[docs] def _check_calibration_and_units(self, band_names, result): for index, band_name in enumerate(band_names): assert result[band_name].attrs["sensor"].islower() assert result[band_name].shape == (2, 5) np.testing.assert_allclose(result[band_name].values, self.expected[index + 1], equal_nan=True) self._check_units(band_name, result)
[docs] @staticmethod def _check_units(band_name, result): if band_name < "C07": assert result[band_name].attrs["calibration"] == "reflectance" else: assert result[band_name].attrs["calibration"] == "brightness_temperature" if band_name < "C07": assert result[band_name].attrs["units"] == "%" else: assert result[band_name].attrs["units"] == "K"
[docs] @staticmethod def _assert_which_channels_are_loaded(available_datasets, band_names, resolution_to_test): from satpy.dataset.data_dict import get_key from satpy.tests.utils import make_dsq other_resolutions = RESOLUTION_LIST.copy() other_resolutions.remove(resolution_to_test) for band_name in band_names: for resolution in other_resolutions: ds_q = make_dsq(name=band_name, resolution=resolution) with pytest.raises(KeyError): _ = get_key(ds_q, available_datasets, num_results=0, best=False) ds_q = make_dsq(name=band_name, resolution=resolution_to_test) res = get_key(ds_q, available_datasets, num_results=0, best=False) if band_name < "C07": assert len(res) == 2 else: assert len(res) == 3