Source code for satpy.tests.reader_tests.test_ami_l1b

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2019 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.
"""The ami_l1b reader tests package."""

import unittest
from unittest import mock

import dask.array as da
import numpy as np
import xarray as xr
from pytest import approx, raises  # noqa: PT013


[docs] class FakeDataset(object): """Mimic xarray Dataset object.""" def __init__(self, info, attrs): """Initialize test data.""" for var_name, var_data in list(info.items()): if isinstance(var_data, np.ndarray): info[var_name] = xr.DataArray(var_data) self.info = info self.attrs = attrs def __getitem__(self, key): """Mimic getitem method.""" return self.info[key] def __contains__(self, key): """Mimic contains method.""" return key in self.info
[docs] def rename(self, *args, **kwargs): """Mimic rename method.""" return self
[docs] def close(self): """Act like close method.""" return
[docs] class TestAMIL1bNetCDFBase(unittest.TestCase): """Common setup for NC_ABI_L1B tests."""
[docs] @mock.patch("satpy.readers.ami_l1b.xr") def setUp(self, xr_, counts=None): """Create a fake dataset using the given counts data.""" from satpy.readers.ami_l1b import AMIL1bNetCDF if counts is None: rad_data = (np.arange(10.).reshape((2, 5)) + 1.) * 50. rad_data = (rad_data + 1.) / 0.5 rad_data = rad_data.astype(np.uint16) counts = xr.DataArray( da.from_array(rad_data, chunks="auto"), dims=("y", "x"), attrs={ "channel_name": "VI006", "detector_side": 2, "number_of_total_pixels": 484000000, "number_of_error_pixels": 113892451, "max_pixel_value": 32768, "min_pixel_value": 6, "average_pixel_value": 8228.98770845248, "stddev_pixel_value": 13621.130386551, "number_of_total_bits_per_pixel": 16, "number_of_data_quality_flag_bits_per_pixel": 2, "number_of_valid_bits_per_pixel": 12, "data_quality_flag_meaning": "0:good_pixel, 1:conditionally_usable_pixel, 2:out_of_scan_area_pixel, 3:error_pixel", "ground_sample_distance_ew": 1.4e-05, "ground_sample_distance_ns": 1.4e-05, } ) sc_position = xr.DataArray(0., attrs={ "sc_position_center_pixel": [-26113466.1974016, 33100139.1630508, 3943.75470244799], }) xr_.open_dataset.return_value = FakeDataset( { "image_pixel_values": counts, "sc_position": sc_position, "gsics_coeff_intercept": [0.1859369], "gsics_coeff_slope": [0.9967594], }, { "satellite_name": "GK-2A", "observation_start_time": 623084431.957882, "observation_end_time": 623084975.606133, "projection_type": "GEOS", "sub_longitude": 2.23751210105673, "cfac": 81701355.6133574, "lfac": -81701355.6133574, "coff": 11000.5, "loff": 11000.5, "nominal_satellite_height": 42164000., "earth_equatorial_radius": 6378137., "earth_polar_radius": 6356752.3, "number_of_columns": 22000, "number_of_lines": 22000, "observation_mode": "FD", "channel_spatial_resolution": "0.5", "Radiance_to_Albedo_c": 1, "DN_to_Radiance_Gain": -0.0144806550815701, "DN_to_Radiance_Offset": 118.050903320312, "Teff_to_Tbb_c0": -0.141418528203155, "Teff_to_Tbb_c1": 1.00052232906885, "Teff_to_Tbb_c2": -0.00000036287276076109, "light_speed": 2.9979245800E+08, "Boltzmann_constant_k": 1.3806488000E-23, "Plank_constant_h": 6.6260695700E-34, } ) self.reader = AMIL1bNetCDF("filename", {"platform_shortname": "gk2a"}, {"file_type": "ir087"},)
[docs] class TestAMIL1bNetCDF(TestAMIL1bNetCDFBase): """Test the AMI L1b reader."""
[docs] def _check_orbital_parameters(self, orb_params): """Check that orbital parameters match expected values.""" exp_params = { "projection_altitude": 35785863.0, "projection_latitude": 0.0, "projection_longitude": 128.2, "satellite_actual_altitude": 35782654.56070405, "satellite_actual_latitude": 0.005364927, "satellite_actual_longitude": 128.2707, } for key, val in exp_params.items(): assert val == approx(orb_params[key], abs=1e-3)
[docs] def test_filename_grouping(self): """Test that filenames are grouped properly.""" from satpy.readers import group_files filenames = [ "gk2a_ami_le1b_ir087_fd020ge_201909300300.nc", "gk2a_ami_le1b_ir096_fd020ge_201909300300.nc", "gk2a_ami_le1b_ir105_fd020ge_201909300300.nc", "gk2a_ami_le1b_ir112_fd020ge_201909300300.nc", "gk2a_ami_le1b_ir123_fd020ge_201909300300.nc", "gk2a_ami_le1b_ir133_fd020ge_201909300300.nc", "gk2a_ami_le1b_nr013_fd020ge_201909300300.nc", "gk2a_ami_le1b_nr016_fd020ge_201909300300.nc", "gk2a_ami_le1b_sw038_fd020ge_201909300300.nc", "gk2a_ami_le1b_vi004_fd010ge_201909300300.nc", "gk2a_ami_le1b_vi005_fd010ge_201909300300.nc", "gk2a_ami_le1b_vi006_fd005ge_201909300300.nc", "gk2a_ami_le1b_vi008_fd010ge_201909300300.nc", "gk2a_ami_le1b_wv063_fd020ge_201909300300.nc", "gk2a_ami_le1b_wv069_fd020ge_201909300300.nc", "gk2a_ami_le1b_wv073_fd020ge_201909300300.nc"] groups = group_files(filenames, reader="ami_l1b") assert len(groups) == 1 assert len(groups[0]["ami_l1b"]) == 16
[docs] def test_basic_attributes(self): """Test getting basic file attributes.""" import datetime as dt assert self.reader.start_time == dt.datetime(2019, 9, 30, 3, 0, 31, 957882) assert self.reader.end_time == dt.datetime(2019, 9, 30, 3, 9, 35, 606133)
[docs] def test_get_dataset(self): """Test gettting radiance data.""" from satpy.tests.utils import make_dataid key = make_dataid(name="VI006", calibration="radiance") res = self.reader.get_dataset(key, { "file_key": "image_pixel_values", "standard_name": "toa_outgoing_radiance_per_unit_wavelength", "units": "W m-2 um-1 sr-1", }) exp = {"calibration": "radiance", "modifiers": (), "platform_name": "GEO-KOMPSAT-2A", "sensor": "ami", "units": "W m-2 um-1 sr-1"} for key, val in exp.items(): assert val == res.attrs[key] self._check_orbital_parameters(res.attrs["orbital_parameters"])
[docs] def test_bad_calibration(self): """Test that asking for a bad calibration fails.""" from satpy.tests.utils import make_dataid with raises(ValueError, match="_bad_ invalid value for .*"): _ = make_dataid(name="VI006", calibration="_bad_")
[docs] @mock.patch("satpy.readers.abi_base.geometry.AreaDefinition") def test_get_area_def(self, adef): """Test the area generation.""" self.reader.get_area_def(None) assert adef.call_count == 1 call_args = tuple(adef.call_args)[0] exp = {"a": 6378137.0, "b": 6356752.3, "h": 35785863.0, "lon_0": 128.2, "proj": "geos", "units": "m"} for key, val in exp.items(): assert key in call_args[3] assert val == approx(call_args[3][key]) assert call_args[4] == self.reader.nc.attrs["number_of_columns"] assert call_args[5] == self.reader.nc.attrs["number_of_lines"] np.testing.assert_allclose(call_args[6], [-5511022.902, -5511022.902, 5511022.902, 5511022.902])
[docs] def test_get_dataset_vis(self): """Test get visible calibrated data.""" from satpy.tests.utils import make_dataid key = make_dataid(name="VI006", calibration="reflectance") res = self.reader.get_dataset(key, { "file_key": "image_pixel_values", "standard_name": "toa_bidirectional_reflectance", "units": "%", }) exp = {"calibration": "reflectance", "modifiers": (), "platform_name": "GEO-KOMPSAT-2A", "sensor": "ami", "units": "%"} for key, val in exp.items(): assert val == res.attrs[key] self._check_orbital_parameters(res.attrs["orbital_parameters"])
[docs] def test_get_dataset_counts(self): """Test get counts data.""" from satpy.tests.utils import make_dataid key = make_dataid(name="VI006", calibration="counts") res = self.reader.get_dataset(key, { "file_key": "image_pixel_values", "standard_name": "counts", "units": "1", }) exp = {"calibration": "counts", "modifiers": (), "platform_name": "GEO-KOMPSAT-2A", "sensor": "ami", "units": "1"} for key, val in exp.items(): assert val == res.attrs[key] self._check_orbital_parameters(res.attrs["orbital_parameters"])
[docs] class TestAMIL1bNetCDFIRCal(TestAMIL1bNetCDFBase): """Test IR specific things about the AMI reader."""
[docs] def setUp(self): """Create test data for IR calibration tests.""" from satpy.tests.utils import make_dataid count_data = (np.arange(10).reshape((2, 5))) + 7000 count_data = count_data.astype(np.uint16) count = xr.DataArray( da.from_array(count_data, chunks="auto"), dims=("y", "x"), attrs={ "channel_name": "IR087", "detector_side": 2, "number_of_total_pixels": 484000000, "number_of_error_pixels": 113892451, "max_pixel_value": 32768, "min_pixel_value": 6, "average_pixel_value": 8228.98770845248, "stddev_pixel_value": 13621.130386551, "number_of_total_bits_per_pixel": 16, "number_of_data_quality_flag_bits_per_pixel": 2, "number_of_valid_bits_per_pixel": 13, "data_quality_flag_meaning": "0:good_pixel, 1:conditionally_usable_pixel, 2:out_of_scan_area_pixel, 3:error_pixel", "ground_sample_distance_ew": 1.4e-05, "ground_sample_distance_ns": 1.4e-05, } ) self.ds_id = make_dataid(name="IR087", wavelength=[8.415, 8.59, 8.765], calibration="brightness_temperature") self.ds_info = { "file_key": "image_pixel_values", "wavelength": [8.415, 8.59, 8.765], "standard_name": "toa_brightness_temperature", "units": "K", } super(TestAMIL1bNetCDFIRCal, self).setUp(counts=count)
[docs] def test_default_calibrate(self): """Test default (pyspectral) IR calibration.""" from satpy.readers.ami_l1b import rad2temp with mock.patch("satpy.readers.ami_l1b.rad2temp", wraps=rad2temp) as r2t_mock: res = self.reader.get_dataset(self.ds_id, self.ds_info) r2t_mock.assert_called_once() expected = np.array([[238.34385135, 238.31443527, 238.28500087, 238.25554813, 238.22607701], [238.1965875, 238.16707956, 238.13755317, 238.10800829, 238.07844489]]) np.testing.assert_allclose(res.data.compute(), expected, equal_nan=True) # make sure the attributes from the file are in the data array assert res.attrs["standard_name"] == "toa_brightness_temperature"
[docs] def test_infile_calibrate(self): """Test IR calibration using in-file coefficients.""" from satpy.readers.ami_l1b import rad2temp self.reader.calib_mode = "FILE" with mock.patch("satpy.readers.ami_l1b.rad2temp", wraps=rad2temp) as r2t_mock: res = self.reader.get_dataset(self.ds_id, self.ds_info) r2t_mock.assert_not_called() expected = np.array([[238.34385135, 238.31443527, 238.28500087, 238.25554813, 238.22607701], [238.1965875, 238.16707956, 238.13755317, 238.10800829, 238.07844489]]) # file coefficients are pretty close, give some wiggle room np.testing.assert_allclose(res.data.compute(), expected, equal_nan=True, atol=0.04) # make sure the attributes from the file are in the data array assert res.attrs["standard_name"] == "toa_brightness_temperature"
[docs] def test_gsics_radiance_corr(self): """Test IR radiance adjustment using in-file GSICS coefs.""" from satpy.readers.ami_l1b import rad2temp self.reader.calib_mode = "GSICS" expected = np.array([[238.036797, 238.007106, 237.977396, 237.947668, 237.91792], [237.888154, 237.85837, 237.828566, 237.798743, 237.768902]]) with mock.patch("satpy.readers.ami_l1b.rad2temp", wraps=rad2temp) as r2t_mock: res = self.reader.get_dataset(self.ds_id, self.ds_info) r2t_mock.assert_not_called() # file coefficients are pretty close, give some wiggle room np.testing.assert_allclose(res.data.compute(), expected, equal_nan=True, atol=0.01) # make sure the attributes from the file are in the data array assert res.attrs["standard_name"] == "toa_brightness_temperature"
[docs] def test_user_radiance_corr(self): """Test IR radiance adjustment using user-supplied coefs.""" from satpy.readers.ami_l1b import rad2temp self.reader.calib_mode = "FILE" self.reader.user_calibration = {"IR087": {"slope": 0.99669, "offset": 0.16907}} expected = np.array([[238.073713, 238.044043, 238.014354, 237.984647, 237.954921], [237.925176, 237.895413, 237.865631, 237.835829, 237.806009]]) with mock.patch("satpy.readers.ami_l1b.rad2temp", wraps=rad2temp) as r2t_mock: res = self.reader.get_dataset(self.ds_id, self.ds_info) r2t_mock.assert_not_called() # file coefficients are pretty close, give some wiggle room np.testing.assert_allclose(res.data.compute(), expected, equal_nan=True, atol=0.01) # make sure the attributes from the file are in the data array assert res.attrs["standard_name"] == "toa_brightness_temperature"