Source code for satpy.readers.hdfeos_base

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2019 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.

"""Base HDF-EOS reader."""

from __future__ import annotations

import datetime as dt
import logging
import re
from ast import literal_eval
from contextlib import suppress

import numpy as np
import xarray as xr
from pyhdf.error import HDF4Error
from pyhdf.SD import SD

from satpy import DataID
from satpy.readers.file_handlers import BaseFileHandler
from satpy.utils import normalize_low_res_chunks

logger = logging.getLogger(__name__)


[docs] def interpolate(clons, clats, csatz, src_resolution, dst_resolution): """Interpolate two parallel datasets jointly.""" if csatz is None: return _interpolate_no_angles(clons, clats, src_resolution, dst_resolution) return _interpolate_with_angles(clons, clats, csatz, src_resolution, dst_resolution)
[docs] def _interpolate_with_angles(clons, clats, csatz, src_resolution, dst_resolution): from geotiepoints.modisinterpolator import modis_1km_to_250m, modis_1km_to_500m, modis_5km_to_1km # (src_res, dst_res, is satz not None) -> interp function interpolation_functions = { (5000, 1000): modis_5km_to_1km, (1000, 500): modis_1km_to_500m, (1000, 250): modis_1km_to_250m } return _find_and_run_interpolation(interpolation_functions, src_resolution, dst_resolution, (clons, clats, csatz))
[docs] def _interpolate_no_angles(clons, clats, src_resolution, dst_resolution): interpolation_functions = {} try: from geotiepoints.simple_modis_interpolator import modis_1km_to_250m as simple_1km_to_250m from geotiepoints.simple_modis_interpolator import modis_1km_to_500m as simple_1km_to_500m except ImportError: raise NotImplementedError( f"Interpolation from {src_resolution}m to {dst_resolution}m " "without satellite zenith angle information is not " "implemented. Try updating your version of " "python-geotiepoints.") else: interpolation_functions[(1000, 500)] = simple_1km_to_500m interpolation_functions[(1000, 250)] = simple_1km_to_250m return _find_and_run_interpolation(interpolation_functions, src_resolution, dst_resolution, (clons, clats))
[docs] def _find_and_run_interpolation(interpolation_functions, src_resolution, dst_resolution, args): try: interpolation_function = interpolation_functions[(src_resolution, dst_resolution)] except KeyError: error_message = "Interpolation from {}m to {}m not implemented".format( src_resolution, dst_resolution) raise NotImplementedError(error_message) logger.debug("Interpolating from {} to {}".format(src_resolution, dst_resolution)) return interpolation_function(*args)
[docs] class HDFEOSBaseFileReader(BaseFileHandler): """Base file handler for HDF EOS data for both L1b and L2 products.""" def __init__(self, filename, filename_info, filetype_info, **kwargs): """Initialize the base reader.""" BaseFileHandler.__init__(self, filename, filename_info, filetype_info) try: self.sd = SD(self.filename) except HDF4Error as err: error_message = "Could not load data from file {}: {}".format(self.filename, err) raise ValueError(error_message) self.metadata = self._load_all_metadata_attributes()
[docs] def _load_all_metadata_attributes(self): metadata = {} attrs = self.sd.attributes() for md_key in ("CoreMetadata.0", "StructMetadata.0", "ArchiveMetadata.0"): try: str_val = attrs[md_key] except KeyError: continue else: metadata.update(self.read_mda(str_val)) return metadata
[docs] @classmethod def read_mda(cls, attribute): """Read the EOS metadata.""" line_iterator = iter(attribute.split("\n")) return cls._read_mda(line_iterator)
[docs] @classmethod def _read_mda(cls, lines, element=None): current_dict = {} for line in lines: if not line: continue if line == "END": return current_dict key, val = cls._split_line(line, lines) if key in ["GROUP", "OBJECT"]: current_dict[val] = cls._read_mda(lines, val) elif key in ["END_GROUP", "END_OBJECT"]: if val != element: raise SyntaxError("Non-matching end-tag") return current_dict elif key in ["CLASS", "NUM_VAL"]: pass else: current_dict[key] = val logger.warning("Malformed EOS metadata, missing an END.") return current_dict
[docs] @classmethod def _split_line(cls, line, lines): key, val = line.split("=", maxsplit=1) key = key.strip() val = val.strip() try: with suppress(ValueError): val = literal_eval(val) except SyntaxError: key, val = cls._split_line(line + next(lines), lines) return key, val
@property def metadata_platform_name(self): """Platform name from the internal file metadata.""" try: # Example: 'Terra' or 'Aqua' return self.metadata["INVENTORYMETADATA"]["ASSOCIATEDPLATFORMINSTRUMENTSENSOR"][ "ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER"]["ASSOCIATEDPLATFORMSHORTNAME"]["VALUE"] except KeyError: return self._platform_name_from_filename()
[docs] def _platform_name_from_filename(self): platform_indicator = self.filename_info["platform_indicator"] if platform_indicator in ("t", "O"): # t1.* or MOD* return "Terra" # a1.* or MYD* return "Aqua"
@property def start_time(self): """Get the start time of the dataset.""" try: date = (self.metadata["INVENTORYMETADATA"]["RANGEDATETIME"]["RANGEBEGINNINGDATE"]["VALUE"] + " " + self.metadata["INVENTORYMETADATA"]["RANGEDATETIME"]["RANGEBEGINNINGTIME"]["VALUE"]) return dt.datetime.strptime(date, "%Y-%m-%d %H:%M:%S.%f") except KeyError: return self._start_time_from_filename()
[docs] def _start_time_from_filename(self): return self.filename_info["start_time"]
@property def end_time(self): """Get the end time of the dataset.""" try: date = (self.metadata["INVENTORYMETADATA"]["RANGEDATETIME"]["RANGEENDINGDATE"]["VALUE"] + " " + self.metadata["INVENTORYMETADATA"]["RANGEDATETIME"]["RANGEENDINGTIME"]["VALUE"]) return dt.datetime.strptime(date, "%Y-%m-%d %H:%M:%S.%f") except KeyError: return self.start_time
[docs] def _read_dataset_in_file(self, dataset_name): if dataset_name not in self.sd.datasets(): error_message = "Dataset name {} not included in available datasets {}".format( dataset_name, self.sd.datasets() ) raise KeyError(error_message) dataset = self.sd.select(dataset_name) return dataset
[docs] def load_dataset(self, dataset_name, is_category=False): """Load the dataset from HDF EOS file.""" from satpy.readers.hdf4_utils import from_sds dataset = self._read_dataset_in_file(dataset_name) chunks = self._chunks_for_variable(dataset) dask_arr = from_sds(dataset, chunks=chunks) dims = ("y", "x") if dask_arr.ndim == 2 else None data = xr.DataArray(dask_arr, dims=dims, attrs=dataset.attributes()) data = self._scale_and_mask_data_array(data, is_category=is_category) return data
[docs] def _chunks_for_variable(self, hdf_dataset): scan_length_250m = 40 var_shape = hdf_dataset.info()[2] res_multiplier = self._get_res_multiplier(var_shape) num_nonyx_dims = len(var_shape) - 2 return normalize_low_res_chunks( (1,) * num_nonyx_dims + ("auto", -1), var_shape, (1,) * num_nonyx_dims + (scan_length_250m, -1), (1,) * num_nonyx_dims + (res_multiplier, res_multiplier), np.float32, )
[docs] @staticmethod def _get_res_multiplier(var_shape): num_columns_to_multiplier = { 271: 20, # 5km 1354: 4, # 1km 2708: 2, # 500m 5416: 1, # 250m } for max_columns, res_multiplier in num_columns_to_multiplier.items(): if var_shape[-1] <= max_columns: return res_multiplier return 1
[docs] def _scale_and_mask_data_array(self, data, is_category=False): """Unscale byte data and mask invalid/fill values. MODIS requires unscaling the in-file bytes in an unexpected way:: data = (byte_value - add_offset) * scale_factor See the below L1B User's Guide Appendix C for more information: https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf """ good_mask, new_fill = self._get_good_data_mask(data, is_category=is_category) scale_factor = data.attrs.pop("scale_factor", None) add_offset = data.attrs.pop("add_offset", None) # don't scale category products, even though scale_factor may equal 1 # we still need to convert integers to floats if scale_factor is not None and not is_category: if add_offset is not None and add_offset != 0: data = data - np.float32(add_offset) data = data * np.float32(scale_factor) if good_mask is not None: data = data.where(good_mask, new_fill) return data
[docs] def _get_good_data_mask(self, data_arr, is_category=False): try: fill_value = data_arr.attrs["_FillValue"] except KeyError: return None, None # preserve integer data types if possible if is_category and np.issubdtype(data_arr.dtype, np.integer): # no need to mask, the fill value is already what it needs to be return None, None fill_type = data_arr.dtype.type if np.issubdtype(data_arr.dtype, np.floating) else np.float32 new_fill = fill_type(np.nan) data_arr.attrs.pop("_FillValue", None) good_mask = data_arr != fill_value return good_mask, new_fill
[docs] def _add_satpy_metadata(self, data_id: DataID, data_arr: xr.DataArray): """Add metadata that is specific to Satpy.""" new_attrs = { "platform_name": "EOS-" + self.metadata_platform_name, "sensor": "modis", } res = data_id["resolution"] rps = self._resolution_to_rows_per_scan(res) new_attrs["rows_per_scan"] = rps data_arr.attrs.update(new_attrs)
[docs] def _resolution_to_rows_per_scan(self, resolution: int) -> int: known_rps = { 5000: 2, 1000: 10, 500: 20, 250: 40, } return known_rps.get(resolution, 10)
[docs] class HDFEOSGeoReader(HDFEOSBaseFileReader): """Handler for the geographical datasets.""" # list of geographical datasets handled by the georeader # mapping to the default variable name if not specified in YAML DATASET_NAMES = { "longitude": "Longitude", "latitude": "Latitude", "satellite_azimuth_angle": ("SensorAzimuth", "Sensor_Azimuth"), "satellite_zenith_angle": ("SensorZenith", "Sensor_Zenith"), "solar_azimuth_angle": ("SolarAzimuth", "SolarAzimuth"), "solar_zenith_angle": ("SolarZenith", "Solar_Zenith"), } def __init__(self, filename, filename_info, filetype_info, **kwargs): """Initialize the geographical reader.""" HDFEOSBaseFileReader.__init__(self, filename, filename_info, filetype_info, **kwargs) self.cache = {}
[docs] @staticmethod def is_geo_loadable_dataset(dataset_name: str) -> bool: """Determine if this dataset should be loaded as a Geo dataset.""" return dataset_name in HDFEOSGeoReader.DATASET_NAMES
[docs] @staticmethod def read_geo_resolution(metadata): """Parse metadata to find the geolocation resolution.""" # level 1 files try: return HDFEOSGeoReader._geo_resolution_for_l1b(metadata) except KeyError: try: return HDFEOSGeoReader._geo_resolution_for_l2_l1b(metadata) except (AttributeError, KeyError): raise RuntimeError("Could not determine resolution from file metadata")
[docs] @staticmethod def _geo_resolution_for_l1b(metadata): ds = metadata["INVENTORYMETADATA"]["COLLECTIONDESCRIPTIONCLASS"]["SHORTNAME"]["VALUE"] if ds.endswith("D03") or ds.endswith("HKM") or ds.endswith("QKM"): return 1000 # 1km files have 5km geolocation usually return 5000
[docs] @staticmethod def _geo_resolution_for_l2_l1b(metadata): # data files probably have this level 2 files # this does not work for L1B 1KM data files because they are listed # as 1KM data but the geo data inside is at 5km latitude_dim = metadata["SwathStructure"]["SWATH_1"]["DimensionMap"]["DimensionMap_2"]["GeoDimension"] resolution_regex = re.compile(r"(?P<resolution>\d+)(km|KM)") resolution_match = resolution_regex.search(latitude_dim) return int(resolution_match.group("resolution")) * 1000
@property def geo_resolution(self): """Resolution of the geographical data retrieved in the metadata.""" return self.read_geo_resolution(self.metadata)
[docs] def _load_ds_by_name(self, ds_name): """Attempt loading using multiple common names.""" var_names = self.DATASET_NAMES[ds_name] if isinstance(var_names, (list, tuple)): try: return self.load_dataset(var_names[0]) except KeyError: return self.load_dataset(var_names[1]) return self.load_dataset(var_names)
[docs] def get_interpolated_dataset(self, name1, name2, resolution, offset=0): """Load and interpolate datasets.""" try: result1 = self.cache[(name1, resolution)] result2 = self.cache[(name2, resolution)] except KeyError: result1 = self._load_ds_by_name(name1) result2 = self._load_ds_by_name(name2) - offset try: sensor_zenith = self._load_ds_by_name("satellite_zenith_angle") except KeyError: # no sensor zenith angle, do "simple" interpolation sensor_zenith = None result1, result2 = interpolate( result1, result2, sensor_zenith, self.geo_resolution, resolution ) self.cache[(name1, resolution)] = result1 self.cache[(name2, resolution)] = result2 + offset
[docs] def get_dataset(self, dataset_id: DataID, dataset_info: dict) -> xr.DataArray: """Get the geolocation dataset.""" # Name of the dataset as it appears in the HDF EOS file in_file_dataset_name = dataset_info.get("file_key") # Name of the dataset in the YAML file dataset_name = dataset_id["name"] # Resolution asked resolution = dataset_id["resolution"] if in_file_dataset_name is not None: # if the YAML was configured with a specific name use that data = self.load_dataset(in_file_dataset_name) else: # otherwise use the default name for this variable data = self._load_ds_by_name(dataset_name) if resolution != self.geo_resolution: if in_file_dataset_name is not None: # they specified a custom variable name but # we don't know how to interpolate this yet raise NotImplementedError( "Interpolation for variable '{}' is not " "configured".format(dataset_name)) # The data must be interpolated logger.debug("Loading %s", dataset_name) if dataset_name in ["longitude", "latitude"]: self.get_interpolated_dataset("longitude", "latitude", resolution) elif dataset_name in ["satellite_azimuth_angle", "satellite_zenith_angle"]: # Sensor dataset names differs between L1b and L2 products self.get_interpolated_dataset("satellite_azimuth_angle", "satellite_zenith_angle", resolution, offset=90) elif dataset_name in ["solar_azimuth_angle", "solar_zenith_angle"]: # Sensor dataset names differs between L1b and L2 products self.get_interpolated_dataset("solar_azimuth_angle", "solar_zenith_angle", resolution, offset=90) data = self.cache[dataset_name, resolution] for key in ("standard_name", "units"): if key in dataset_info: data.attrs[key] = dataset_info[key] self._add_satpy_metadata(dataset_id, data) return data