Source code for satpy.tests.reader_tests.test_generic_image

#!/usr/bin/python
# Copyright (c) 2018 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.
"""Unittests for generic image reader."""

import os
import unittest

import dask.array as da
import numpy as np
import pytest
import xarray as xr

from satpy.tests.utils import RANDOM_GEN, make_dataid


[docs] class TestGenericImage(unittest.TestCase): """Test generic image reader."""
[docs] def setUp(self): """Create temporary images to test on.""" import datetime as dt import tempfile from pyresample.geometry import AreaDefinition from satpy.scene import Scene self.date = dt.datetime(2018, 1, 1) # Create area definition pcs_id = "ETRS89 / LAEA Europe" proj4_dict = "EPSG:3035" self.x_size = 100 self.y_size = 100 area_extent = (2426378.0132, 1528101.2618, 6293974.6215, 5446513.5222) self.area_def = AreaDefinition("geotiff_area", pcs_id, pcs_id, proj4_dict, self.x_size, self.y_size, area_extent) # Create datasets for L, LA, RGB and RGBA mode images r__ = da.random.randint(0, 256, size=(self.y_size, self.x_size), chunks=(50, 50)).astype(np.uint8) g__ = da.random.randint(0, 256, size=(self.y_size, self.x_size), chunks=(50, 50)).astype(np.uint8) b__ = da.random.randint(0, 256, size=(self.y_size, self.x_size), chunks=(50, 50)).astype(np.uint8) a__ = 255 * np.ones((self.y_size, self.x_size), dtype=np.uint8) a__[:10, :10] = 0 a__ = da.from_array(a__, chunks=(50, 50)) r_nan__ = RANDOM_GEN.uniform(0., 1., size=(self.y_size, self.x_size)) r_nan__[:10, :10] = np.nan r_nan__ = da.from_array(r_nan__, chunks=(50, 50)) ds_l = xr.DataArray(da.stack([r__]), dims=("bands", "y", "x"), attrs={"name": "test_l", "start_time": self.date}) ds_l["bands"] = ["L"] ds_la = xr.DataArray(da.stack([r__, a__]), dims=("bands", "y", "x"), attrs={"name": "test_la", "start_time": self.date}) ds_la["bands"] = ["L", "A"] ds_rgb = xr.DataArray(da.stack([r__, g__, b__]), dims=("bands", "y", "x"), attrs={"name": "test_rgb", "start_time": self.date}) ds_rgb["bands"] = ["R", "G", "B"] ds_rgba = xr.DataArray(da.stack([r__, g__, b__, a__]), dims=("bands", "y", "x"), attrs={"name": "test_rgba", "start_time": self.date}) ds_rgba["bands"] = ["R", "G", "B", "A"] ds_l_nan = xr.DataArray(da.stack([r_nan__]), dims=("bands", "y", "x"), attrs={"name": "test_l_nan", "start_time": self.date}) ds_l_nan["bands"] = ["L"] # Temp dir for the saved images self.base_dir = tempfile.mkdtemp() # Put the datasets to Scene for easy saving scn = Scene() scn["l"] = ds_l scn["l"].attrs["area"] = self.area_def scn["la"] = ds_la scn["la"].attrs["area"] = self.area_def scn["rgb"] = ds_rgb scn["rgb"].attrs["area"] = self.area_def scn["rgba"] = ds_rgba scn["rgba"].attrs["area"] = self.area_def scn["l_nan"] = ds_l_nan scn["l_nan"].attrs["area"] = self.area_def # Save the images. Two images in PNG and two in GeoTIFF scn.save_dataset("l", os.path.join(self.base_dir, "test_l.png"), writer="simple_image") scn.save_dataset("la", os.path.join(self.base_dir, "20180101_0000_test_la.png"), writer="simple_image") scn.save_dataset("rgb", os.path.join(self.base_dir, "20180101_0000_test_rgb.tif"), writer="geotiff") scn.save_dataset("rgba", os.path.join(self.base_dir, "test_rgba.tif"), writer="geotiff") scn.save_dataset("l_nan", os.path.join(self.base_dir, "test_l_nan_fillvalue.tif"), writer="geotiff", fill_value=0) scn.save_dataset("l_nan", os.path.join(self.base_dir, "test_l_nan_nofillvalue.tif"), writer="geotiff") self.scn = scn
[docs] def tearDown(self): """Remove the temporary directory created for a test.""" try: import shutil shutil.rmtree(self.base_dir, ignore_errors=True) except OSError: pass
[docs] def test_png_scene(self): """Test reading PNG images via satpy.Scene().""" from rasterio.errors import NotGeoreferencedWarning from satpy import Scene fname = os.path.join(self.base_dir, "test_l.png") with pytest.warns(NotGeoreferencedWarning, match=r"Dataset has no geotransform"): scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) assert scn["image"].shape == (1, self.y_size, self.x_size) assert scn.sensor_names == {"images"} assert scn.start_time is None assert scn.end_time is None assert "area" not in scn["image"].attrs fname = os.path.join(self.base_dir, "20180101_0000_test_la.png") with pytest.warns(NotGeoreferencedWarning, match=r"Dataset has no geotransform"): scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) data = da.compute(scn["image"].data) assert scn["image"].shape == (1, self.y_size, self.x_size) assert scn.sensor_names == {"images"} assert scn.start_time == self.date assert scn.end_time == self.date assert "area" not in scn["image"].attrs assert np.sum(np.isnan(data)) == 100
[docs] def test_geotiff_scene(self): """Test reading TIFF images via satpy.Scene().""" from satpy import Scene fname = os.path.join(self.base_dir, "20180101_0000_test_rgb.tif") scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) assert scn["image"].shape == (3, self.y_size, self.x_size) assert scn.sensor_names == {"images"} assert scn.start_time == self.date assert scn.end_time == self.date assert scn["image"].area == self.area_def fname = os.path.join(self.base_dir, "test_rgba.tif") scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) assert scn["image"].shape == (3, self.y_size, self.x_size) assert scn.sensor_names == {"images"} assert scn.start_time is None assert scn.end_time is None assert scn["image"].area == self.area_def
[docs] def test_geotiff_scene_nan(self): """Test reading TIFF images originally containing NaN values via satpy.Scene().""" from satpy import Scene fname = os.path.join(self.base_dir, "test_l_nan_fillvalue.tif") scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) assert scn["image"].shape == (1, self.y_size, self.x_size) assert np.sum(scn["image"].data[0][:10, :10].compute()) == 0 fname = os.path.join(self.base_dir, "test_l_nan_nofillvalue.tif") scn = Scene(reader="generic_image", filenames=[fname]) scn.load(["image"]) assert scn["image"].shape == (1, self.y_size, self.x_size) assert np.all(np.isnan(scn["image"].data[0][:10, :10].compute()))
[docs] def test_GenericImageFileHandler(self): """Test direct use of the reader.""" from satpy.readers.generic_image import GenericImageFileHandler fname = os.path.join(self.base_dir, "test_rgba.tif") fname_info = {"start_time": self.date} ftype_info = {} reader = GenericImageFileHandler(fname, fname_info, ftype_info) foo = make_dataid(name="image") assert reader.file_content assert reader.finfo["filename"] == fname assert reader.finfo["start_time"] == self.date assert reader.finfo["end_time"] == self.date assert reader.area == self.area_def assert reader.get_area_def(None) == self.area_def assert reader.start_time == self.date assert reader.end_time == self.date dataset = reader.get_dataset(foo, {}) assert isinstance(dataset, xr.DataArray) assert "spatial_ref" in dataset.coords assert np.all(np.isnan(dataset.data[:, :10, :10].compute()))
[docs] def test_GenericImageFileHandler_masking_only_integer(self): """Test direct use of the reader.""" from satpy.readers.generic_image import GenericImageFileHandler class FakeGenericImageFileHandler(GenericImageFileHandler): def __init__(self, filename, filename_info, filetype_info, file_content, **kwargs): """Get fake file content from 'get_test_content'.""" super(GenericImageFileHandler, self).__init__(filename, filename_info, filetype_info) self.file_content = file_content self.dataset_name = None self.file_content.update(kwargs) data = self.scn["rgba"] # do nothing if not integer float_data = data / 255. reader = FakeGenericImageFileHandler("dummy", {}, {}, {"image": float_data}) assert reader.get_dataset(make_dataid(name="image"), {}) is float_data # masking if integer data = data.astype(np.uint32) assert data.bands.size == 4 reader = FakeGenericImageFileHandler("dummy", {}, {}, {"image": data}) ret_data = reader.get_dataset(make_dataid(name="image"), {}) assert ret_data.bands.size == 3
[docs] def test_GenericImageFileHandler_datasetid(self): """Test direct use of the reader.""" from satpy.readers.generic_image import GenericImageFileHandler fname = os.path.join(self.base_dir, "test_rgba.tif") fname_info = {"start_time": self.date} ftype_info = {} reader = GenericImageFileHandler(fname, fname_info, ftype_info) foo = make_dataid(name="image-custom") assert reader.file_content dataset = reader.get_dataset(foo, {}) assert isinstance(dataset, xr.DataArray)
[docs] def test_GenericImageFileHandler_nodata(self): """Test nodata handling with direct use of the reader.""" from satpy.readers.generic_image import GenericImageFileHandler fname = os.path.join(self.base_dir, "test_l_nan_fillvalue.tif") fname_info = {"start_time": self.date} ftype_info = {} reader = GenericImageFileHandler(fname, fname_info, ftype_info) foo = make_dataid(name="image-custom") assert reader.file_content info = {"nodata_handling": "nan_mask"} dataset = reader.get_dataset(foo, info) assert isinstance(dataset, xr.DataArray) assert np.all(np.isnan(dataset.data[0][:10, :10].compute())) assert np.isnan(dataset.attrs["_FillValue"]) info = {"nodata_handling": "fill_value"} dataset = reader.get_dataset(foo, info) assert isinstance(dataset, xr.DataArray) assert np.sum(dataset.data[0][:10, :10].compute()) == 0 assert dataset.attrs["_FillValue"] == 0 # default same as 'nodata_handling': 'fill_value' dataset = reader.get_dataset(foo, {}) assert isinstance(dataset, xr.DataArray) assert np.sum(dataset.data[0][:10, :10].compute()) == 0 assert dataset.attrs["_FillValue"] == 0