#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2019 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy. If not, see <http://www.gnu.org/licenses/>.
"""The agri_l1 reader tests package."""
import os
from unittest import mock
import dask.array as da
import numpy as np
import pytest
import xarray as xr
from satpy.tests.reader_tests.test_hdf5_utils import FakeHDF5FileHandler
ALL_BAND_NAMES = ["C01", "C02", "C03", "C04", "C05", "C06", "C07",
"C08", "C09", "C10", "C11", "C12", "C13", "C14"]
CHANNELS_BY_RESOLUTION = {500: ["C02"],
1000: ["C01", "C02", "C03"],
2000: ["C01", "C02", "C03", "C04", "C05", "C06", "C07"],
4000: ALL_BAND_NAMES,
"GEO": "solar_azimuth_angle"
}
RESOLUTION_LIST = [500, 1000, 2000, 4000]
AREA_EXTENTS_BY_RESOLUTION = {"FY4A": {
500: (-5496021.008869, 5495021.005046, -5493520.999312, 5496021.008869),
1000: (-5496021.076004, 5494021.068334, -5491021.05683, 5496021.076004),
2000: (-5496021.210274, 5492021.194837, -5486021.171682, 5496021.210274),
4000: (-5496021.210274, 5488021.1794, -5476021.13309, 5496021.210274)
},
"FY4B": {
500: (-5496021.008869, 5495021.005046, -5493520.999312, 5496021.008869),
1000: (-5496021.076004, 5494021.068334, -5491021.05683, 5496021.076004),
2000: (-5496021.210274, 5492021.194837, -5486021.171682, 5496021.210274),
4000: (-5496021.210274, 5488021.1794, -5476021.13309, 5496021.210274)
}}
[docs]
class FakeHDF5FileHandler2(FakeHDF5FileHandler):
"""Swap-in HDF5 File Handler."""
[docs]
def _make_cal_data(self, cwl, ch, dims):
"""Make test data."""
return xr.DataArray(
da.from_array((np.arange(10.) + 1.) / 10., [dims[0] * dims[1]]),
attrs={
"Slope": np.array(1.), "Intercept": np.array(0.),
"FillValue": np.array(-65535.0),
"units": "NUL",
"center_wavelength": "{}um".format(cwl).encode("utf-8"),
"band_names": "band{}(band number is range from 1 to 14)"
.format(ch).encode("utf-8"),
"long_name": "Calibration table of {}um Channel".format(cwl).encode("utf-8"),
"valid_range": np.array([0, 1.5]),
},
dims="_const")
[docs]
def _make_nom_data(self, cwl, ch, dims):
# Add +1 to check that values beyond the LUT are clipped
data_np = np.arange(10, dtype=np.uint16).reshape((2, 5)) + 1
fill_value = 65535
valid_max = 4095
if ch == 7:
# mimic C07 bug where the fill value is in the LUT
fill_value = 9 # at index [1, 3] (second to last element)
valid_max = 8
return xr.DataArray(
da.from_array(data_np, chunks=[dim for dim in dims]),
attrs={
"Slope": np.array(1.), "Intercept": np.array(0.),
"FillValue": np.array(fill_value),
"units": "DN",
"center_wavelength": "{}um".format(cwl).encode("utf-8"),
"band_names": "band{}(band number is range from 1 to 14)"
.format(ch).encode("utf-8"),
"long_name": "Calibration table of {}um Channel".format(cwl).encode("utf-8"),
"valid_range": np.array([0, valid_max]),
},
dims=("_RegLength", "_RegWidth"))
[docs]
def _make_geo_data(self, dims):
return xr.DataArray(
da.from_array(np.arange(0., 360., 36., dtype=np.float32).reshape((2, 5)),
[dim for dim in dims]),
attrs={
"Slope": np.array(1.), "Intercept": np.array(0.),
"FillValue": np.array(65535.),
"units": "NUL",
"band_names": "NUL",
"valid_range": np.array([0., 360.]),
},
dims=("_RegLength", "_RegWidth"))
[docs]
def _create_coeffs_array(self, channel_numbers: list[int]) -> xr.DataArray:
# make coefficients consistent between file types
all_possible_coeffs = (np.arange(14 * 2).reshape((14, 2)) + 1.0) / np.array([1E4, 1E2])
# get the coefficients for the specific channels this resolution has
these_coeffs = all_possible_coeffs[[chan_num - 1 for chan_num in channel_numbers]]
data = xr.DataArray(
da.from_array(these_coeffs, chunks=[len(channel_numbers), 2]),
attrs={
"Slope": 1., "Intercept": 0.,
"FillValue": 0,
"units": "NUL",
"band_names": "NUL",
"long_name": b"Calibration coefficient (SCALE and OFFSET)",
"valid_range": [-500, 500],
},
dims=("_num_channel", "_coefs"))
return data
[docs]
def _create_channel_data(self, chs, cwls):
dim_0 = 2
dim_1 = 5
data = {}
for chan_num, chan_wl in zip(chs, cwls):
cal_data = self._make_cal_data(chan_wl, chan_num, [dim_0, dim_1])
data[f"CALChannel{chan_num:02d}"] = cal_data
data[f"Calibration/CALChannel{chan_num:02d}"] = cal_data
nom_data = self._make_nom_data(chan_wl, chan_num, [dim_0, dim_1])
data[f"NOMChannel{chan_num:02d}"] = nom_data
data[f"Data/NOMChannel{chan_num:02d}"] = nom_data
data["CALIBRATION_COEF(SCALE+OFFSET)"] = self._create_coeffs_array(chs)
data["Calibration/CALIBRATION_COEF(SCALE+OFFSET)"] = self._create_coeffs_array(chs)
return data
[docs]
def _get_500m_data(self):
chs = [2]
cwls = [0.65]
return self._create_channel_data(chs, cwls)
[docs]
def _get_1km_data(self):
chs = [1, 2, 3]
cwls = [0.47, 0.65, 0.83]
return self._create_channel_data(chs, cwls)
[docs]
def _get_2km_data(self):
chs = [1, 2, 3, 4, 5, 6, 7]
cwls = [0.47, 0.65, 0.83, 1.37, 1.61, 2.22, 3.72]
return self._create_channel_data(chs, cwls)
[docs]
def _get_4km_data(self):
chs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
cwls = [0.47, 0.65, 0.83, 1.37, 1.61, 2.22, 3.72, 3.72, 6.25, 7.10, 8.50, 10.8, 12, 13.5]
return self._create_channel_data(chs, cwls)
[docs]
def _get_geo_data(self):
dim_0 = 2
dim_1 = 5
data = {"NOMSunAzimuth": self._make_geo_data([dim_0, dim_1]),
"Navigation/NOMSunAzimuth": self._make_geo_data([dim_0, dim_1])}
return data
[docs]
def get_test_content(self, filename, filename_info, filetype_info):
"""Mimic reader input file content."""
global_attrs = {
"/attr/NOMCenterLat": np.array(0.0),
"/attr/NOMCenterLon": np.array(104.7),
"/attr/NOMSatHeight": np.array(42164140.0),
"/attr/dEA": np.array(6378.14),
"/attr/dObRecFlat": np.array(298.257223563),
"/attr/OBIType": "REGC",
"/attr/RegLength": np.array(2.0),
"/attr/RegWidth": np.array(5.0),
"/attr/Begin Line Number": np.array(0),
"/attr/End Line Number": np.array(1),
"/attr/Begin Pixel Number": np.array(0),
"/attr/End Pixel Number": np.array(1),
"/attr/Observing Beginning Date": "2019-06-03", "/attr/Observing Beginning Time": "00:30:01.807",
"/attr/Observing Ending Date": "2019-06-03", "/attr/Observing Ending Time": "00:34:07.572",
"/attr/Satellite Name": "FY4A", "/attr/Sensor Identification Code": "AGRI", "/attr/Sensor Name": "AGRI",
}
data = {}
if self.filetype_info["file_type"] == "agri_l1_0500m":
data = self._get_500m_data()
elif self.filetype_info["file_type"] == "agri_l1_1000m":
data = self._get_1km_data()
elif self.filetype_info["file_type"] == "agri_l1_2000m":
data = self._get_2km_data()
global_attrs["/attr/Observing Beginning Time"] = "00:30:01"
global_attrs["/attr/Observing Ending Time"] = "00:34:07"
elif self.filetype_info["file_type"] == "agri_l1_4000m":
data = self._get_4km_data()
elif self.filetype_info["file_type"] == "agri_l1_4000m_geo":
data = self._get_geo_data()
test_content = {}
test_content.update(global_attrs)
test_content.update(data)
return test_content
[docs]
def _create_filenames_from_resolutions(satname, *resolutions):
"""Create filenames from the given resolutions."""
if "GEO" in resolutions:
return [f"{satname}-_AGRI--_N_REGC_1047E_L1-_GEO-_MULT_NOM_20190603003000_20190603003416_4000M_V0001.HDF"]
pattern = (f"{satname}-_AGRI--_N_REGC_1047E_L1-_FDI-_MULT_NOM_20190603003000_20190603003416_"
"{resolution:04d}M_V0001.HDF")
return [pattern.format(resolution=resolution) for resolution in resolutions]
[docs]
class Test_HDF_AGRI_L1_cal:
"""Test VIRR L1B Reader."""
yaml_file = "agri_fy4a_l1.yaml"
[docs]
def setup_method(self):
"""Wrap HDF5 file handler with our own fake handler."""
from satpy._config import config_search_paths
from satpy.readers.agri_l1 import HDF_AGRI_L1
from satpy.readers.fy4_base import FY4Base
self.reader_configs = config_search_paths(os.path.join("readers", self.yaml_file))
# http://stackoverflow.com/questions/12219967/how-to-mock-a-base-class-with-python-mock-library
self.fy4 = mock.patch.object(FY4Base, "__bases__", (FakeHDF5FileHandler2,))
self.p = mock.patch.object(HDF_AGRI_L1.__class__, (self.fy4,))
self.fake_handler = self.fy4.start()
self.p.is_local = True
self.satname = "FY4A"
self.expected = {
1: np.array([[2.01, 2.02, 2.03, 2.04, 2.05], [2.06, 2.07, 2.08, 2.09, 2.1]]),
2: np.array([[4.03, 4.06, 4.09, 4.12, 4.15], [4.18, 4.21, 4.24, 4.27, 4.3]]),
3: np.array([[6.05, 6.1, 6.15, 6.2, 6.25], [6.3, 6.35, 6.4, 6.45, 6.5]]),
4: np.array([[8.07, 8.14, 8.21, 8.28, 8.35], [8.42, 8.49, 8.56, 8.63, 8.7]]),
5: np.array([[10.09, 10.18, 10.27, 10.36, 10.45], [10.54, 10.63, 10.72, 10.81, 10.9]]),
6: np.array([[12.11, 12.22, 12.33, 12.44, 12.55], [12.66, 12.77, 12.88, 12.99, 13.1]]),
7: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, np.nan, np.nan]]),
8: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
9: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
10: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
11: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
12: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
13: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]]),
14: np.array([[0.2, 0.3, 0.4, 0.5, 0.6], [0.7, 0.8, 0.9, 1., np.nan]])
}
[docs]
def teardown_method(self):
"""Stop wrapping the HDF5 file handler."""
self.p.stop()
[docs]
def test_times_correct(self):
"""Test that the reader handles the two possible time formats correctly."""
reader = self._create_reader_for_resolutions(1000)
np.testing.assert_almost_equal(reader.start_time.microsecond, 807000)
reader = self._create_reader_for_resolutions(2000)
np.testing.assert_almost_equal(reader.start_time.microsecond, 0)
[docs]
def test_fy4a_channels_are_loaded_with_right_resolution(self):
"""Test all channels are loaded with the right resolution."""
reader = self._create_reader_for_resolutions(*RESOLUTION_LIST)
available_datasets = reader.available_dataset_ids
for resolution_to_test in RESOLUTION_LIST:
self._check_keys_for_dsq(available_datasets, resolution_to_test)
[docs]
def test_agri_all_bands_have_right_units(self):
"""Test all bands have the right units."""
reader = self._create_reader_for_resolutions(*RESOLUTION_LIST)
band_names = ALL_BAND_NAMES
res = reader.load(band_names)
assert len(res) == 14
for band_name in band_names:
assert res[band_name].shape == (2, 5)
self._check_units(band_name, res)
[docs]
def test_agri_orbital_parameters_are_correct(self):
"""Test orbital parameters are set correctly."""
reader = self._create_reader_for_resolutions(*RESOLUTION_LIST)
band_names = ALL_BAND_NAMES
res = reader.load(band_names)
# check whether the data type of orbital_parameters is float
orbital_parameters = res[band_names[0]].attrs["orbital_parameters"]
for attr in orbital_parameters:
assert isinstance(orbital_parameters[attr], float)
assert orbital_parameters["satellite_nominal_latitude"] == 0.
assert orbital_parameters["satellite_nominal_longitude"] == 104.7
assert orbital_parameters["satellite_nominal_altitude"] == 42164140.0
[docs]
@staticmethod
def _check_keys_for_dsq(available_datasets, resolution_to_test):
from satpy.dataset.data_dict import get_key
from satpy.tests.utils import make_dsq
band_names = CHANNELS_BY_RESOLUTION[resolution_to_test]
for band_name in band_names:
ds_q = make_dsq(name=band_name, resolution=resolution_to_test)
res = get_key(ds_q, available_datasets, num_results=0, best=False)
if band_name < "C07":
assert len(res) == 2
else:
assert len(res) == 3
[docs]
def test_agri_counts_calibration(self):
"""Test loading data at counts calibration."""
from satpy.tests.utils import make_dsq
reader = self._create_reader_for_resolutions(*RESOLUTION_LIST)
ds_ids = []
band_names = CHANNELS_BY_RESOLUTION[4000]
for band_name in band_names:
ds_ids.append(make_dsq(name=band_name, calibration="counts"))
res = reader.load(ds_ids)
assert len(res) == 14
for band_name in band_names:
assert res[band_name].shape == (2, 5)
assert res[band_name].attrs["calibration"] == "counts"
assert res[band_name].dtype == np.uint16
assert res[band_name].attrs["units"] == "1"
[docs]
@pytest.mark.parametrize("satname", ["FY4A", "FY4B"])
def test_agri_geo(self, satname):
"""Test loading data for angles."""
from satpy.tests.utils import make_dsq
self.satname = satname
reader = self._create_reader_for_resolutions("GEO")
band_name = "solar_azimuth_angle"
ds_ids = [make_dsq(name=band_name)]
res = reader.load(ds_ids)
assert len(res) == 1
np.testing.assert_almost_equal(np.nanmin(res[band_name]), 0.)
np.testing.assert_almost_equal(np.nanmax(res[band_name]), 324.)
assert res[band_name].shape == (2, 5)
assert res[band_name].dtype == np.float32
[docs]
def _create_reader_for_resolutions(self, *resolutions):
from satpy.readers import load_reader
filenames = _create_filenames_from_resolutions(self.satname, *resolutions)
reader = load_reader(self.reader_configs)
files = reader.select_files_from_pathnames(filenames)
assert len(filenames) == len(files)
reader.create_filehandlers(files)
# Make sure we have some files
assert reader.file_handlers
return reader
[docs]
@pytest.mark.parametrize("resolution_to_test", RESOLUTION_LIST)
@pytest.mark.parametrize("satname", ["FY4A", "FY4B"])
def test_agri_for_one_resolution(self, resolution_to_test, satname):
"""Test loading data when only one resolution is available."""
self.satname = satname
reader = self._create_reader_for_resolutions(resolution_to_test)
available_datasets = reader.available_dataset_ids
band_names = CHANNELS_BY_RESOLUTION[resolution_to_test]
self._assert_which_channels_are_loaded(available_datasets, band_names, resolution_to_test)
res = reader.load(band_names)
assert len(res) == len(band_names)
self._check_calibration_and_units(band_names, res)
for band_name in band_names:
np.testing.assert_allclose(res[band_name].attrs["area"].area_extent,
AREA_EXTENTS_BY_RESOLUTION[satname][resolution_to_test])
[docs]
def _check_calibration_and_units(self, band_names, result):
for band_name in band_names:
band_number = int(band_name[-2:])
assert result[band_name].attrs["sensor"].islower()
assert result[band_name].shape == (2, 5)
np.testing.assert_allclose(result[band_name].values, self.expected[band_number], equal_nan=True)
self._check_units(band_name, result)
[docs]
@staticmethod
def _check_units(band_name, result):
if band_name < "C07":
assert result[band_name].attrs["calibration"] == "reflectance"
else:
assert result[band_name].attrs["calibration"] == "brightness_temperature"
if band_name < "C07":
assert result[band_name].attrs["units"] == "%"
else:
assert result[band_name].attrs["units"] == "K"
[docs]
@staticmethod
def _assert_which_channels_are_loaded(available_datasets, band_names, resolution_to_test):
from satpy.dataset.data_dict import get_key
from satpy.tests.utils import make_dsq
other_resolutions = RESOLUTION_LIST.copy()
other_resolutions.remove(resolution_to_test)
for band_name in band_names:
for resolution in other_resolutions:
ds_q = make_dsq(name=band_name, resolution=resolution)
with pytest.raises(KeyError):
_ = get_key(ds_q, available_datasets, num_results=0, best=False)
ds_q = make_dsq(name=band_name, resolution=resolution_to_test)
res = get_key(ds_q, available_datasets, num_results=0, best=False)
if band_name < "C07":
assert len(res) == 2
else:
assert len(res) == 3