Source code for satpy.readers.hrit_base

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2014-2018 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.

"""HRIT/LRIT format reader.

This module is the base module for all HRIT-based formats. Here, you will find
the common building blocks for hrit reading.

One of the features here is the on-the-fly decompression of hrit files when
compressed hrit files are encountered (files finishing with `.C_`).
"""

import datetime as dt
import logging
import os

import dask
import dask.array as da
import numpy as np
import xarray as xr
from pyresample import geometry

import satpy.readers.utils as utils
from satpy.readers import FSFile
from satpy.readers.eum_base import time_cds_short
from satpy.readers.file_handlers import BaseFileHandler
from satpy.readers.seviri_base import dec10216

logger = logging.getLogger("hrit_base")

common_hdr = np.dtype([("hdr_id", "u1"),
                       ("record_length", ">u2")])

primary_header = np.dtype([("file_type", "u1"),
                           ("total_header_length", ">u4"),
                           ("data_field_length", ">u8")])

image_structure = np.dtype([("number_of_bits_per_pixel", "u1"),
                            ("number_of_columns", ">u2"),
                            ("number_of_lines", ">u2"),
                            ("compression_flag_for_data", "u1")])

image_navigation = np.dtype([("projection_name", "S32"),
                             ("cfac", ">i4"),
                             ("lfac", ">i4"),
                             ("coff", ">i4"),
                             ("loff", ">i4")])

image_data_function = np.dtype([("function", "|S1")])

annotation_header = np.dtype([("annotation", "|S1")])

timestamp_record = np.dtype([("cds_p_field", "u1"),
                             ("timestamp", time_cds_short)])

ancillary_text = np.dtype([("ancillary", "|S1")])

key_header = np.dtype([("key", "|S1")])

base_text_headers = {image_data_function: "image_data_function",
                     annotation_header: "annotation_header",
                     ancillary_text: "ancillary_text",
                     key_header: "key_header"}

base_hdr_map = {0: primary_header,
                1: image_structure,
                2: image_navigation,
                3: image_data_function,
                4: annotation_header,
                5: timestamp_record,
                6: ancillary_text,
                7: key_header,
                }


[docs] def decompress(infile): """Decompress an XRIT data file and return the decompressed buffer.""" from pyPublicDecompWT import xRITDecompress # decompress in-memory with open(infile, mode="rb") as fh: xrit = xRITDecompress() xrit.decompress(fh.read()) return xrit.data()
[docs] def get_header_id(fp): """Return the HRIT header common data.""" data = fp.read(common_hdr.itemsize) return np.frombuffer(data, dtype=common_hdr, count=1)[0]
[docs] def get_header_content(fp, header_dtype, count=1): """Return the content of the HRIT header.""" data = fp.read(header_dtype.itemsize * count) return np.frombuffer(data, dtype=header_dtype, count=count)
[docs] class HRITFileHandler(BaseFileHandler): """HRIT standard format reader.""" def __init__(self, filename, filename_info, filetype_info, hdr_info): """Initialize the reader.""" super(HRITFileHandler, self).__init__(filename, filename_info, filetype_info) self.mda = {} self.hdr_info = hdr_info self._get_hd(self.hdr_info) self._start_time = filename_info["start_time"] self._end_time = self._start_time + dt.timedelta(minutes=15)
[docs] def _get_hd(self, hdr_info): """Open the file, read and get the basic file header info and set the mda dictionary.""" hdr_map, variable_length_headers, text_headers = hdr_info with utils.generic_open(self.filename, mode="rb") as fp: total_header_length = 16 while fp.tell() < total_header_length: hdr_id = get_header_id(fp) the_type = hdr_map[hdr_id["hdr_id"]] if the_type in variable_length_headers: field_length = int((hdr_id["record_length"] - 3) / the_type.itemsize) current_hdr = get_header_content(fp, the_type, field_length) key = variable_length_headers[the_type] if key in self.mda: if not isinstance(self.mda[key], list): self.mda[key] = [self.mda[key]] self.mda[key].append(current_hdr) else: self.mda[key] = current_hdr elif the_type in text_headers: field_length = int((hdr_id["record_length"] - 3) / the_type.itemsize) char = list(the_type.fields.values())[0][0].char new_type = np.dtype(char + str(field_length)) current_hdr = get_header_content(fp, new_type)[0] self.mda[text_headers[the_type]] = current_hdr else: current_hdr = get_header_content(fp, the_type)[0] self.mda.update( dict(zip(current_hdr.dtype.names, current_hdr))) total_header_length = self.mda["total_header_length"] self.mda.setdefault("number_of_bits_per_pixel", 10) self.mda["projection_parameters"] = {"a": 6378169.00, "b": 6356583.80, "h": 35785831.00, # FIXME: find a reasonable SSP "SSP_longitude": 0.0} self.mda["orbital_parameters"] = {}
@property def observation_start_time(self): """Get observation start time.""" return self._start_time @property def observation_end_time(self): """Get observation end time.""" return self._end_time @property def start_time(self): """Get start time.""" return self._start_time @property def end_time(self): """Get end time.""" return self._end_time
[docs] def get_dataset(self, key, info): """Load a dataset.""" # Read bands data = self.read_band(key, info) # Convert to xarray xdata = xr.DataArray(data, dims=["y", "x"]) return xdata
[docs] def get_xy_from_linecol(self, line, col, offsets, factors): """Get the intermediate coordinates from line & col. Intermediate coordinates are actually the instruments scanning angles. """ loff, coff = offsets lfac, cfac = factors x__ = (col - coff) / cfac * 2**16 y__ = (line - loff) / lfac * 2**16 return x__, y__
[docs] def get_area_extent(self, size, offsets, factors, platform_height): """Get the area extent of the file.""" nlines, ncols = size h = platform_height # count starts at 1 cols = 1 - 0.5 lines = 1 - 0.5 ll_x, ll_y = self.get_xy_from_linecol(lines, cols, offsets, factors) cols += ncols lines += nlines ur_x, ur_y = self.get_xy_from_linecol(lines, cols, offsets, factors) return (np.deg2rad(ll_x) * h, np.deg2rad(ll_y) * h, np.deg2rad(ur_x) * h, np.deg2rad(ur_y) * h)
[docs] def get_area_def(self, dsid): """Get the area definition of the band.""" cfac = np.int32(self.mda["cfac"]) lfac = np.int32(self.mda["lfac"]) coff = np.float32(self.mda["coff"]) loff = np.float32(self.mda["loff"]) a = self.mda["projection_parameters"]["a"] b = self.mda["projection_parameters"]["b"] h = self.mda["projection_parameters"]["h"] lon_0 = self.mda["projection_parameters"]["SSP_longitude"] nlines = int(self.mda["number_of_lines"]) ncols = int(self.mda["number_of_columns"]) area_extent = self.get_area_extent((nlines, ncols), (loff, coff), (lfac, cfac), h) proj_dict = {"a": float(a), "b": float(b), "lon_0": float(lon_0), "h": float(h), "proj": "geos", "units": "m"} area = geometry.AreaDefinition( "some_area_name", "On-the-fly area", "geosmsg", proj_dict, ncols, nlines, area_extent) self.area = area return area
[docs] def read_band(self, key, info): """Read the data.""" output_dtype, output_shape = self._get_output_info() return da.from_delayed(_read_data(self.filename, self.mda), shape=output_shape, dtype=output_dtype)
[docs] def _get_output_info(self): bpp = self.mda["number_of_bits_per_pixel"] if bpp in [10, 16]: output_dtype = np.uint16 elif bpp == 8: output_dtype = np.uint8 else: raise ValueError(f"Unexpected number of bits per pixel: {bpp}") output_shape = (self.mda["number_of_lines"], self.mda["number_of_columns"]) return output_dtype, output_shape
@dask.delayed def _read_data(filename, mda): return HRITSegment(filename, mda).read_data()
[docs] class HRITSegment: """An HRIT segment with data.""" def __init__(self, filename, mda): """Set up the segment.""" self.filename = filename self.mda = mda self.lines = mda["number_of_lines"] self.cols = mda["number_of_columns"] self.bpp = mda["number_of_bits_per_pixel"] self.compressed = mda["compression_flag_for_data"] == 1 self.offset = mda["total_header_length"] self.zipped = os.fspath(filename).endswith(".bz2")
[docs] def read_data(self): """Read the data.""" data = self._read_data_from_file() if self.bpp == 10: data = dec10216(data) data = data.reshape((self.lines, self.cols)) return data
[docs] def _read_data_from_file(self): if self._is_file_like(): return self._read_file_like() return self._read_data_from_disk()
[docs] def _is_file_like(self): return isinstance(self.filename, FSFile)
[docs] def _read_data_from_disk(self): # For reading the image data, unzip_context is faster than generic_open dtype, shape = self._get_input_info() with utils.unzip_context(self.filename) as fn: if self.compressed: return np.frombuffer( decompress(fn), offset=self.offset, dtype=dtype, count=np.prod(shape) ) else: return np.fromfile( fn, offset=self.offset, dtype=dtype, count=np.prod(shape) )
[docs] def _read_file_like(self): # filename is likely to be a file-like object, already in memory dtype, shape = self._get_input_info() with utils.generic_open(self.filename, mode="rb") as fp: no_elements = np.prod(shape) fp.seek(self.offset) return np.frombuffer( fp.read(np.dtype(dtype).itemsize * no_elements), dtype=np.dtype(dtype), count=no_elements.item() ).reshape(shape)
[docs] def _get_input_info(self): total_bits = int(self.lines) * int(self.cols) * int(self.bpp) input_shape = int(np.ceil(total_bits / 8.)) if self.bpp == 16: input_dtype = ">u2" input_shape //= 2 elif self.bpp in [8, 10]: input_dtype = np.uint8 else: raise ValueError(f"Unexpected number of bits per pixel: {self.bpp}") input_shape = (input_shape,) return input_dtype, input_shape