Satpy Documentation
Release 0.45.1.dev0+ge338294dd.d20231129

Satpy Developers

Nov 29, 2023

1 Getting Help

2 Documentation

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16

Overview v i i i e e
Installation Instructions

Reading remote files

Composites
Resampling,
Enhancements
Writing oL
MultiScene (Experimental)

Developer’s Guide

SatPY e e e

3 Indices and tables

Python Module Index

Index

CONTENTS

Configuration
Downloading Data
Examples L oo
Quickstart
Reading,

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Satpy is a python library for reading, manipulating, and writing data from remote-sensing earth-observing satellite
instruments. Satpy provides users with readers that convert geophysical parameters from various file formats to the
common Xarray DataArray and Dataset classes for easier interoperability with other scientific python libraries.
Satpy also provides interfaces for creating RGB (Red/Green/Blue) images and other composite types by combining data
from multiple instrument bands or products. Various atmospheric corrections and visual enhancements are provided
for improving the usefulness and quality of output images. Output data can be written to multiple output file formats
such as PNG, GeoTTFF, and CF standard NetCDF files. Satpy also allows users to resample data to geographic projected
grids (areas). Satpy is maintained by the open source Pytroll group.

The Satpy library acts as a high-level abstraction layer on top of other libraries maintained by the Pytroll group includ-
ing:

e pyresample

* pyspectral

e trollimage

* pycoast

* pydecorate

* python-geotiepoints
* pyninjotiff

Go to the Satpy project page for source code and downloads.

Satpy is designed to be easily extendable to support any earth observation satellite by the creation of plugins (readers,
compositors, writers, etc). The table at the bottom of this page shows the input formats supported by the base Satpy
installation.

Note: Satpy’s interfaces are not guaranteed stable and may change until version 1.0 when backwards compatibility
will be a main focus.

CONTENTS 1

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://pytroll.github.io/
http://pyresample.readthedocs.io/en/latest/
https://pyspectral.readthedocs.io/en/latest/
http://trollimage.readthedocs.io/en/latest/
https://pycoast.readthedocs.io/en/latest/
https://pydecorate.readthedocs.io/en/latest/
https://python-geotiepoints.readthedocs.io/en/latest/
https://github.com/pytroll/pyninjotiff
http://github.com/pytroll/satpy

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2 CONTENTS

CHAPTER
ONE

GETTING HELP

Having trouble installing or using Satpy? Feel free to ask questions at any of the contact methods for the PyTroll group
here or file an issue on Satpy’s GitHub page.

https://pytroll.github.io/#getting-in-touch
https://github.com/pytroll/satpy/issues

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

4 Chapter 1. Getting Help

CHAPTER
TWO

DOCUMENTATION

2.1 Overview

Satpy is designed to provide easy access to common operations for processing meteorological remote sensing data.
Any details needed to perform these operations are configured internally to Satpy meaning users should not have to
worry about how something is done, only ask for what they want. Most of the features provided by Satpy can be
configured by keyword arguments (see the APl Documentation or other specific section for more details). For more
complex customizations or added features Satpy uses a set of configuration files that can be modified by the user. The
various components and concepts of Satpy are described below. The Quickstart guide also provides simple example
code for the available features of Satpy.

2.1.1 Scene

Satpy provides most of its functionality through the Scene class. This acts as a container for the datasets being operated
on and provides methods for acting on those datasets. It attempts to reduce the amount of low-level knowledge needed
by the user while still providing a pythonic interface to the functionality underneath.

A Scene object represents a single geographic region of data, typically at a single continuous time range. It is possible
to combine Scenes to form a Scene with multiple regions or multiple time observations, but it is not guaranteed that all
functionality works in these situations.

2.1.2 DataArrays

Satpy’s lower-level container for data is the xarray.DataArray. For historical reasons DataArrays are often referred
to as “Datasets” in Satpy. These objects act similar to normal numpy arrays, but add additional metadata and attributes
for describing the data. Metadata is stored in a .attrs dictionary and named dimensions can be accessed in a .dims
attribute, along with other attributes. In most use cases these objects can be operated on like normal NumPy arrays
with special care taken to make sure the metadata dictionary contains expected values. See the X Array documentation
for more info on handling xarray.DataArray objects.

Additionally, Satpy uses a special form of DataArrays where data is stored in dask.array.Array objects which
allows Satpy to perform multi-threaded lazy operations vastly improving the performance of processing. For help on
developing with dask and xarray see Migrating to xarray and dask or the documentation for the specific project.

To uniquely identify DataArray objects Satpy uses DatalD. A DatalID consists of various pieces of available meta-
data. This usually includes name and wavelength as identifying metadata, but can also include resolution, calibration,
polarization, and additional modifiers to further distinguish one dataset from another. For more information on DatalD
objects, have a look a Satpy internal workings: having a look under the hood.

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.dask.org/en/latest/generated/dask.array.Array.html#dask.array.Array

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Warning: XArray includes other object types called “Datasets”. These are different from the “Datasets” men-
tioned in Satpy.

Data chunks

The usage of dask as the foundation for Satpy’s operation means that the underlying data is chunked, that is, cut
in smaller pieces that can then be processed in parallel. Information on dask’s chunking can be found in the dask
documentation here: https://docs.dask.org/en/stable/array-chunks.html The size of these chunks can have a significant
impact on the performance of satpy, so to achieve best performance it can be necessary to adjust it.

Default chunk size used by Satpy can be configured by using the following around your code:

with dask.config.set("array.chunk-size": "32MiB"):
your code here

Or by using:

[dask .config.set("array.chunk-size": "32MiB")]

at the top of your code.

There are other ways to set dask configuration items, including configuration files or environment variables, see here:
https://docs.dask.org/en/stable/configuration.html

The value of the chunk-size can be given in different ways, see here: https://docs.dask.org/en/stable/api.html#dask.
utils.parse_bytes

The default value for this parameter is 128MiB, which can translate to chunk sizes of 4096x4096 for 64-bit float arrays.
Note however that some reader might choose to use a liberal interpretation of the chunk size which will not necessarily
result in a square chunk, or even to a chunk size of the exact requested size. The motivation behind this is that data

stored as stripes may load much faster if the horizontal striping is kept as much as possible instead of cutting the data
in square chunks. However, the Satpy readers should respect the overall chunk size when it makes sense.

Note: The legacy way of providing the chunks size in Satpy is the PYTROLL_CHUNK_SIZE environment variable. This
is now pending deprecation, so an equivalent way to achieve the same result is by using the DASK_ARRAY__CHUNK_SIZE
environment variable. The value to assign to the variable is the square of the legacy variable, multiplied by the size of
array data type at hand, so for example, for 64-bits floats:

[export DASK_ARRAY__CHUNK_SIZE=134217728]

which is the same as:

[export DASK_ARRAY__CHUNK_SIZE="128MiB"

is equivalent to the deprecated:

[export PYTROLL_CHUNK_STZE-4096 J

6 Chapter 2. Documentation

https://docs.dask.org/en/stable/array-chunks.html
https://docs.dask.org/en/stable/configuration.html
https://docs.dask.org/en/stable/api.html#dask.utils.parse_bytes
https://docs.dask.org/en/stable/api.html#dask.utils.parse_bytes

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.1.3 Reading

One of the biggest advantages of using Satpy is the large number of input file formats that it can read. It encapsulates
this functionality into individual Reading. Satpy Readers handle all of the complexity of reading whatever format they
represent. Meteorological Satellite file formats can be extremely complex and formats are rarely reused across satellites
or instruments. No matter the format, Satpy’s Reader interface is meant to provide a consistent data loading interface
while still providing flexibility to add new complex file formats.

2.1.4 Compositing

Many users of satellite imagery combine multiple sensor channels to bring out certain features of the data. This includes
using one dataset to enhance another, combining 3 or more datasets in to an RGB image, or any other combination of
datasets. Satpy comes with a lot of common composite combinations built-in and allows the user to request them like
any other dataset. Satpy also makes it possible to create your own custom composites and have Satpy treat them like
any other dataset. See Composites for more information.

2.1.5 Resampling

Satellite imagery data comes in two forms when it comes to geolocation, native satellite swath coordinates and uniform
gridded projection coordinates. It is also common to see the channels from a single sensor in multiple resolutions,
making it complicated to combine or compare the datasets. Many use cases of satellite data require the data to be
in a certain projection other than the native projection or to have output imagery cover a specific area of interest.
Satpy makes it easy to resample datasets to allow for users to combine them or grid them to these projections or areas
of interest. Satpy uses the PyTroll pyresample package to provide nearest neighbor, bilinear, or elliptical weighted
averaging resampling methods. See Resampling for more information.

2.1.6 Enhancements

When making images from satellite data the data has to be manipulated to be compatible with the output image format
and still look good to the human eye. Satpy calls this functionality “enhancing” the data, also commonly called scaling
or stretching the data. This process can become complicated not just because of how subjective the quality of an image
can be, but also because of historical expectations of forecasters and other users for how the data should look. Satpy
tries to hide the complexity of all the possible enhancement methods from the user and just provide the best looking
image by default. Satpy still makes it possible to customize these procedures, but in most cases it shouldn’t be necessary.
See the documentation on Writing for more information on what’s possible for output formats and enhancing images.

2.1.7 Writing

Satpy is designed to make data loading, manipulating, and analysis easy. However, the best way to get satellite imagery
data out to as many users as possible is to make it easy to save it in multiple formats. Satpy allows users to save data
in image formats like PNG or GeoTTFF as well as data file formats like NetCDF. Each format’s complexity is hidden
behind the interface of individual Writer objects and includes keyword arguments for accessing specific format features
like compression and output data type. See the Writing documentation for the available writers and how to use them.

2.1. Overview 7

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.2 Installation Instructions

Satpy is available from conda-forge (via conda), PyPI (via pip), or from source (via pip+git). The below instructions
show how to install stable versions of Satpy. For a development/unstable version see Development installation.

2.2.1 Conda-based Installation
Satpy can be installed into a conda environment by installing the package from the conda-forge channel. If you do not
already have access to a conda installation, we recommend installing miniconda for the smallest and easiest installation.

The commands below will use -c conda-forge to make sure packages are downloaded from the conda-forge channel.
Alternatively, you can tell conda to always use conda-forge by running:

[$ conda config --add channels conda-forge]

In a new conda environment

We recommend creating a separate environment for your work with Satpy. To create a new environment and install
Satpy all in one command you can run:

[$ conda create -c conda-forge -n my_satpy_env python satpy J

You must then activate the environment so any future python or conda commands will use this environment.

[$ conda activate my_satpy_env]

This method of creating an environment with Satpy (and optionally other packages) installed can generally be created
faster than creating an environment and then later installing Satpy and other packages (see the section below).

In an existing environment

Note: It is recommended that when first exploring Satpy, you create a new environment specifically for this rather
than modifying one used for other work.

If you already have a conda environment, it is activated, and would like to install Satpy into it, run the following:

[$ conda install -c conda-forge satpy]

Note: Satpy only automatically installs the dependencies needed to process the most common use cases. Additional
dependencies may need to be installed with conda or pip if import errors are encountered. To check your installation
use the check_satpy function discussed /Zere.

8 Chapter 2. Documentation

https://docs.conda.io/en/latest/miniconda.html

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.2.2 Pip-based Installation

Satpy is available from the Python Packaging Index (PyPI). A sandbox environment for safpy can be created using
Virtualenv.

To install the satpy package and the minimum amount of python dependencies:

[$ pip install satpy]

Additional dependencies can be installed as “extras” and are grouped by reader, writer, or feature added. Extras avail-
able can be found in the setup.py file. They can be installed individually:

[$ pip install "satpy[viirs_sdr]" J

Or all at once, although this isn’t recommended due to the large number of dependencies:

[s pip install "satpy[all]"]

2.2.3 Ubuntu System Python Installation

To install Satpy on an Ubuntu system we recommend using virtual environments to separate Satpy and its dependencies
from the rest of the system. Note that these instructions require using “sudo” privileges which may not be available to
all users and can be very dangerous. The following instructions attempt to install some Satpy dependencies using the
Ubuntu apt package manager to ease installation. Replace /path/to/pytroll-env with the environment to be created.

sudo apt-get install python-pip python-gdal
sudo pip install virtualenv

virtualenv /path/to/pytroll-env

source /path/to/pytroll-env/bin/activate
pip install satpy

P A A A A

2.3 Configuration

Satpy has two levels of configuration that allow to control how Satpy and its various components behave. There are a
series of “settings” that change the global Satpy behavior. There are also a series of “component configuration” YAML
files for controlling the complex functionality in readers, compositors, writers, and other Satpy components that can’t
be controlled with traditional keyword arguments.

2.3.1 Settings

There are configuration parameters in Satpy that are not specific to one component and control more global behavior
of Satpy. These parameters can be set in one of three ways:

1. Environment variable
2. YAML file
3. Atruntime with satpy.config

This functionality is provided by the donfig library. The currently available settings are described below. Each option
is available from all three methods. If specified as an environment variable or specified in the YAML file on disk, it
must be set before Satpy is imported.

2.3. Configuration 9

http://pypi.python.org/pypi/virtualenv
https://github.com/pytroll/satpy/blob/main/setup.py
https://donfig.readthedocs.io/en/latest/configuration.html

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

YAML Configuration
YAML files that include these parameters can be in any of the following locations:
1. <python environment prefix>/etc/satpy/satpy.yaml
2. <user_config_dir>/satpy.yaml (see below)
3. ~/.satpy/satpy.yaml
4. <SATPY_CONFIG_PATH>/satpy.yaml (see Component Configuration Path below)

The above user_config_dir is provided by the appdirs package and differs by operating system. Typical user config
directories are:

¢ Mac OSX: ~/Library/Preferences/satpy
e Unix/Linux: ~/.config/satpy
¢ Windows: C:\\Users\\<username>\\AppData\\Local\\pytroll\\satpy

All YAML files found from the above paths will be merged into one configuration object (accessed via satpy.config).
The YAML contents should be a simple mapping of configuration key to its value. For example:

cache_dir: "/tmp"
data_dir: "/tmp"

Lastly, it is possible to specify an additional config path to the above options by setting the environment variable
SATPY_CONFIG. The file specified with this environment variable will be added last after all of the above paths have
been merged together.

At runtime

After import, the values can be customized at runtime by doing:

import satpy
satpy.config.set(cache_dir="/my/new/cache/path")
... normal satpy code ...

Or for specific blocks of code:

import satpy

with satpy.config.set(cache_dir="/my/new/cache/path"):
... some satpy code ...

... code using the original cache_dir

Similarly, if you need to access one of the values you can use the satpy.config.get method.

Cache Directory

¢ Environment variable: SATPY_CACHE_DIR
* YAML/Config Key: cache_dir
e Default: See below

Directory where any files cached by Satpy will be stored. This directory is not necessarily cleared out by Satpy, but is
rarely used without explicitly being enabled by the user. This defaults to a different path depending on your operating
system following the appdirs “user cache dir”.

10 Chapter 2. Documentation

https://github.com/ActiveState/appdirs#some-example-output

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Cache Longitudes and Latitudes

¢ Environment variable: SATPY_CACHE_LONLATS
* YAML/Config Key: cache_lonlats
e Default: False

Whether or not generated longitude and latitude coordinates should be cached to on-disk zarr arrays. Currently this
only works in very specific cases. Mainly the lon/lats that are generated when computing sensor and solar zenith and
azimuth angles used in various modifiers and compositors. This caching is only done for AreaDefinition-based
geolocation, not SwathDefinition. Arrays are stored in cache_dir (see above).

When setting this as an environment variable, this should be set with the string equivalent of the Python boolean values
="True" or ="False".

See also cache_sensor_angles below.

Warning: This caching does not limit the number of entries nor does it expire old entries. It is up to the user to
manage the contents of the cache directory.

Cache Sensor Angles

¢ Environment variable: SATPY_CACHE_SENSOR_ANGLES
* YAML/Config Key: cache_sensor_angles
¢ Default: False

Whether or not generated sensor azimuth and sensor zenith angles should be cached to on-disk zarr arrays. These
angles are primarily used in certain modifiers and compositors. This caching is only done for AreaDefinition-based
geolocation, not SwathDefinition. Arrays are stored in cache_dir (see above).

This caching requires producing an estimate of the angles to avoid needing to generate new angles for every new data
case. This happens because the angle generation depends on the observation time of the data and the position of
the satellite (longitude, latitude, altitude). The angles are estimated by using a constant observation time for all cases
(maximum ~1e-10 error) and by rounding satellite position coordinates to the nearest tenth of a degree for longitude and
latitude and nearest tenth meter (maximum ~0.058 error). Note these estimations are only done if caching is enabled
(this parameter is True).

When setting this as an environment variable, this should be set with the string equivalent of the Python boolean values
="True" or ="False".

See also cache_lonlats above.

Warning: This caching does not limit the number of entries nor does it expire old entries. It is up to the user to
manage the contents of the cache directory.

2.3. Configuration 11

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Component Configuration Path

¢ Environment variable: SATPY_CONFIG_PATH
* YAML/Config Key: config_path
¢ Default: []

Base directory, or directories, where Satpy component YAML configuration files are stored. Satpy expects configu-
ration files for specific component types to be in appropriate subdirectories (ex. readers, writers, etc), but these
subdirectories should not be included in the config_path. For example, if you have custom composites configured in
/my/config/dir/etc/composites/visir.yaml, then config_path should include /my/config/dir/etc for
Satpy to find this configuration file when searching for composites. This option replaces the legacy PPP_CONFIG_DIR
environment variable.

Note that this value must be a list. In Python, this could be set by doing:

[satpy. config.set(config_path=["'/path/customl', '/path/custom2'])]

If setting an environment variable then it must be a colon-separated (:) string on Linux/OSX or semicolon-separate
(;) separated string and must be set before calling/importing Satpy. If the environment variable is a single path it will
be converted to a list when Satpy is imported.

[export SATPY_CONFIG_PATH="/path/customl:/path/custom2"]

On Windows, with paths on the C: drive, these paths would be:

[set SATPY_CONFIG_PATH="C:/path/customl;C:/path/custom2"]

Satpy will always include the builtin configuration files that it is distributed with regardless of this setting. When a
component supports merging of configuration files, they are merged in reverse order. This means “base” configuration
paths should be at the end of the list and custom/user paths should be at the beginning of the list.

Data Directory

¢ Environment variable: SATPY_DATA_DIR
* YAML/Config Key: data_dir
e Default: See below

Directory where any data Satpy needs to perform certain operations will be stored. This replaces the legacy
SATPY_ANCPATH environment variable. This defaults to a different path depending on your operating system following
the appdirs “user data dir”.

Demo Data Directory

¢ Environment variable: SATPY_DEMO_DATA_DIR
* YAML/Config Key: demo_data_dir
* Default: <current working directory>

Directory where demo data functions will download data files to. Available demo data functions can be found in
satpy.demo subpackage.

12 Chapter 2. Documentation

https://github.com/ActiveState/appdirs#some-example-output

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Download Auxiliary Data

¢ Environment variable: SATPY_DOWNLOAD_AUX
* YAML/Config Key: download_aux
e Default: True

Whether to allow downloading of auxiliary files for certain Satpy operations. See Auxiliary Data Download for more
information. If True then Satpy will download and cache any necessary data files to Data Directory when needed. If
False then pre-downloaded files will be used, but any other files will not be downloaded or checked for validity.

Sensor Angles Position Preference

¢ Environment variable: SATPY_SENSOR_ANGLES_POSITION_PREFERENCE
* YAML/Config Key: sensor_angles_position_preference
e Default: “actual”

Control which satellite position should be preferred when generating sensor azimuth and sensor zenith angles. This
value is passed directly to the get_satpos () function. See the documentation for that function for more information
on how the value will be used. This is used as part of the get_angles() and get_satellite_zenith_angle()
functions which is used by multiple modifiers and composites including the default rayleigh correction.

Clipping Negative Infrared Radiances

¢ Environment variable: SATPY_READERS__CLIP_NEGATIVE_RADIANCES
* YAML/Config Key: readers.clip_negative_radiances
* Default: False

Whether to clip negative infrared radiances to the minimum allowable value before computing the brightness temper-
ature. If clip_negative_radiances=False, pixels with negative radiances will have np.nan brightness tempera-
tures.

Clipping of negative radiances is currently implemented for the following readers:

e abi_l1b

Temporary Directory

* Environment variable: SATPY_TMP_DIR
* YAML/Config Key: tmp_dir
 Default: tempfile.gettempdir()

Directory where Satpy creates temporary files, for example decompressed input files. Default depends on the operating
system.

2.3. Configuration 13

https://docs.python.org/3/library/tempfile.html?highlight=gettempdir#tempfile.gettempdir

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.3.2 Component Configuration

Much of the functionality of Satpy comes from the various components it uses, like readers, writers, compositors, and
enhancements. These components are configured for reuse from YAML files stored inside Satpy or in custom user
configuration files. Custom directories can be provided by specifying the config_path setting mentioned above.

To create and use your own custom component configuration you should:

1. Create a directory to store your new custom YAML configuration files. The files for each component will go in
a subdirectory specific to that component (ex. composites, enhancements, readers, writers).

2. Set the Satpy config_path to point to your new directory. This could be done by setting the environment variable
SATPY_CONFIG_PATH to your custom directory (don’t include the component sub-directory) or one of the other
methods for setting this path.

3. Create YAML configuration files with your custom YAML files. In most cases there is no need to copy config-
uration from the builtin Satpy files as these will be merged with your custom files.

4. If your custom configuration uses custom Python code, this code must be importable by Python. This means
your code must either be installed in your Python environment or you must set your PYTHONPATH to the location
of the modules.

5. Run your Satpy code and access your custom components like any of the builtin components.

2.4 Downloading Data

One of the main features of Satpy is its ability to read various satellite data formats. However, it currently only provides
limited methods for downloading data from remote sources and these methods are limited to demo data for Pytroll
examples. See the examples and the demo API documentation for details. Otherwise, Satpy assumes all data is available
through the local system, either as a local directory or network mounted file systems. Certain readers that use xarray
to open data files may be able to load files from remote systems by using OpenDAP or similar protocols.

As a user there are two options for getting access to data:
1. Download data to your local machine.
2. Connect to a remote system that already has access to data.

The most common case of a remote system having access to data is with a cloud computing service like Google Cloud
Platform (GCP) or Amazon Web Services (AWS). Another possible case is an organization having direct broadcast
antennas where they receive data directly from the satellite or satellite mission organization (NOAA, NASA, EUMET-
SAT, etc). In these cases data is usually available as a mounted network file system and can be accessed like a normal
local path (with the added latency of network communications).

Below are some data sources that provide data that can be read by Satpy. If you know of others please let us know by
either creating a GitHub issue or pull request.

2.4.1 NOAA GOES on Amazon Web Services

* Resource Description
e Data Browser
¢ Associated Readers: abi_11b

In addition to the pages above, Brian Blaylock’s GOES-2-Go python package is useful for downloading GOES data to
your local machine. Brian also prepared some instructions for using the rclone tool for downloading AWS data to a
local machine. The instructions can be found here.

14 Chapter 2. Documentation

https://github.com/pytroll/pytroll-examples
https://github.com/pytroll/pytroll-examples
https://registry.opendata.aws/noaa-goes/
http://noaa-goes16.s3.amazonaws.com/index.html
https://github.com/blaylockbk/goes2go
https://github.com/blaylockbk/pyBKB_v3/blob/master/rclone_howto.md

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.4.2 NOAA GOES on Google Cloud Platform

GOES-16

* Resource Description
e Data Browser
¢ Associated Readers: abi_11b

GOES-17

* Resource Description
* Data Browser

¢ Associated Readers: abi_11b

2.4.3 NOAA CLASS

e Data Ordering

e Associated Readers: viirs_sdr

2.4.4 NASA VIIRS Atmosphere SIPS

* Resource Description

¢ Associated Readers: viirs_11b

2.4.5 EUMETSAT Data Center

* Data Ordering

2.5 Examples

Satpy examples are available as Jupyter Notebooks on the pytroll-examples git repository. Some examples are described
in further detail as separate pages in this documentation. They include python code, PNG images, and descriptions of
what the example is doing. Below is a list of some of the examples and a brief summary. Additional examples can be
found at the repository mentioned above or as explanations in the various sections of this documentation.

2.5.1 MTG FCI - Natural Color Example

Satpy includes a reader for the Meteosat Third Generation (MTG) FCI Level 1c data. The following Python code
snippet shows an example on how to use Satpy to generate a Natural Color RGB composite over the European area.

Warning: This example is currently a work in progress. Some of the below code may not work with the currently
released version of Satpy. Additional updates to this example will be coming soon.

2.5. Examples 15

https://console.cloud.google.com/marketplace/details/noaa-public/goes-16
https://console.cloud.google.com/storage/browser/gcp-public-data-goes-16
https://console.cloud.google.com/marketplace/details/noaa-public/goes-17
https://console.cloud.google.com/storage/browser/gcp-public-data-goes-17
https://www.class.ncdc.noaa.gov
https://sips.ssec.wisc.edu/
https://eoportal.eumetsat.int
https://github.com/pytroll/pytroll-examples/tree/main/satpy

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Note: For reading compressed data, a decompression library is needed. Either install the FCIDECOMP library (see
the FCI L1 Product User Guide, or the hdf5plugin package with:

[pip install hdf5plugin

or:

[conda install hdf5plugin -c conda-forge

If you use hdf5plugin, make sure to add the line import hdf5plugin at the top of your script.

from satpy.scene import Scene
from satpy import find_files_and_readers

define path to FCI test data folder
path_to_data = 'your/path/to/FCI/data/folder/’'

find files and assign the FCI reader
files = find_files_and_readers(base_dir=path_to_data, reader='fci_llc_nc')

create an FCI scene from the selected files
scn = Scene(filenames=files)

print available dataset names for this scene (e.g. 'vis_04', 'vis_05','ir_38',...)
print(scn.available_dataset_names())

print available composite names for this scene (e.g. 'natural_color', 'airmass’,
—'convection',...)
print(scn.available_composite_names())

load the datasets/composites of interest

scn.load(['natural_color', 'vis_04'], upper_right_corner='NE")

note: the data inside the FCI files is stored upside down. The upper_right_corner='NE.
—argument

flips it automatically in upright position.

you can access the values of a dataset as a Numpy array with
vis_04_values = scn['vis_04'].values

resample the scene to a specified area (e.g. "euroll" for Europe in lkm resolution)
scn_resampled = scn.resample("eurol"”, resampler='nearest', radius_of_influence=5000)

save the resampled dataset/composite to disk
scn_resampled.save_dataset("natural_color", filename='./fci_natural_color_resampled.png")

16 Chapter 2. Documentation

https://www.eumetsat.int/media/45923

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.5.2 EPS-SG VIl netCDF Example

Satpy includes a reader for the EPS-SG Visible and Infrared Imager (VII) Level 1b data. The following Python code
snippet shows an example on how to use Satpy to read a channel and resample and save the image over the European
area.

Warning: This example is currently a work in progress. Some of the below code may not work with the currently
released version of Satpy. Additional updates to this example will be coming soon.

import glob
from satpy.scene import Scene

find the file/files to be read
filenames = glob.glob('/path/to/VII/data/W_xx-eumetsat-darmstadt,SAT,SGA1-VII-1B-RAD_C_
—EUMT_20191007055100% ")

create a VII scene from the selected granule(s)
scn = Scene(filenames=filenames, reader='vii_llb_nc')

print available dataset names for this scene
print(scn.available_dataset_names())

load the datasets of interest
NOTE: only radiances are supported for test data
scn.load(["vii_668"], calibration="radiance™)

resample the scene to a specified area (e.g. "euroll" for Europe in lkm resolution)
eur = scn.resample('eurol"”, resampler='nearest', radius_of_influence=5000)

save the resampled data to disk
eur.save_dataset("vii_668", filename='./vii_668_eur.png")

2.5. Examples 17

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Name

Description

Quickstart with MSG data

Cartopy Plot
Himawari-8 AHI True Color

Sentinel-3 OLCI True Color
Sentinel 2 MSI true color
Suomi-NPP VIIRS SDR True Color

Aqua/Terra MODIS True Color
Sentinel 1 SAR-C False Color

Level 2 EARS-NWC cloud products

Level 2 MAIA cloud products

Meteosat Third Generation FCI Natural Color
RGB

Reading EPS-SG Visible and Infrared Imager
(VII) with Pytroll

Satpy quickstart for loading and processing satellite data, with
MSG data in this examples

Plot a single VIIRS SDR granule using Cartopy and matplotlib
Generate and resample a rayleigh corrected true color RGB from
Himawari-8 AHI data

Reading OLCI data from Sentinel 3 with Pytroll/Satpy

Reading MSI data from Sentinel 2 with Pytroll/Satpy

Generate a rayleigh corrected true color RGB from VIIRS I- and
M-bands

Generate and resample a rayleigh corrected true color RGB from
MODIS

Generate a false color composite RGB from SAR-C polarized
datasets

Reading Level 2 EARS-NWC cloud products

Reading Level 2 MAIA cloud products

Generate Natural Color RGB from Meteosat Third Generation
(MTG) FCI Level 1c data

Read and visualize EPS-SG VII L1B test data and save it to an
image

2.6 Quickstart

2.6.1 Loading and accessing data

To work with weather satellite data you must create a Scene object. Satpy does not currently provide an interface to
download satellite data, it assumes that the data is on a local hard disk already. In order for Satpy to get access to the
data the Scene must be told what files to read and what Satpy Reader should read them:

>>> from satpy import Scene
>>> from glob import glob

>>> filenames = glob("/home/a®01673/data/satellite/Meteosat-10/seviri/1v11.5/2015/04/20/

—HRIT/*201504201000*")
>>> global_scene =

Scene(reader="seviri_l1lb_hrit", filenames=filenames)

To load data from the files use the Scene.load method. Printing the Scene object will list each of the xarray.

DataArray objects currently loaded:

>>> global_scene.load(['0.8",
>>> print(global_scene)

'1.6",

'10.8'1)

<xarray.DataArray 'reshape-d66223a8e05819b890c4535bc7e74356"' (y: 3712, x: 3712)>
dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:
B R (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
*y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:
orbital_parameters: {'projection_longitude': 0.0, 'pr...
sensor: seviri
platform_name: Meteosat-11

standard_name:

brightness_temperature

(continues on next page)

18

Chapter 2. Documentation

https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/hrit_msg_tutorial.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/Cartopy%20Plot.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/ahi_true_color_pyspectral.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/OLCI%20L1B.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/Sentinel%202%20MSI%20true%20color.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/satpy_rayleigh_iband_enhanced.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/satpy_rayleigh_modis.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/sentinel1-false-color.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/ears-nwc.ipynb
https://nbviewer.jupyter.org/github/pytroll/pytroll-examples/blob/main/satpy/polar_maia.ipynb
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

(continued from previous page)

units: K

wavelength: (9.8, 10.8, 11.8)
start_time: 2018-02-28 15:00:10.814000
end_time: 2018-02-28 15:12:43.956000
area: Area ID: some_area_name\nDescription: On-the-fly ar...
name: IR_108

resolution: 3000.40316582

calibration: brightness_temperature
polarization: None

level: None

modifiers: O

ancillary_variables: []

<xarray.DataArray 'reshape-1982d32298acal5acb42c481£fd74a629' (y: 3712, x: 3712)>
dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:
E (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
*y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:

orbital_parameters:
Sensor:

{'projection_longitude': 0.0, 'pr...

seviri

platform_name: Meteosat-11

standard_name: toa_bidirectional_reflectance
units: %

wavelength: (0.74, 0.81, 0.88)
start_time: 2018-02-28 15:00:10.814000
end_time: 2018-02-28 15:12:43.956000
area: Area ID: some_area_name\nDescription: On-the-fly ar...
name: VIS008

resolution: 3000.40316582

calibration: reflectance

polarization: None

level: None

modifiers: O

ancillary_variables: []

<xarray.DataArray 'reshape-e86d03c30ce754995ff9da484c0dc338"'

(y: 3712, x: 3712)>

dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:

AT (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
*y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:

orbital_parameters:
sensor:
platform_name:
standard_name:
units:
wavelength:
start_time:
end_time:
area:

name:
resolution:
calibration:

{'projection_longitude': 0.0, 'pr...
seviri

Meteosat-11
toa_bidirectional_reflectance

%

(1.5, 1.64, 1.78)

2018-02-28 15:00:10.814000
2018-02-28 15:12:43.956000

Area ID: some_area_name\nDescription: On-the-fly ar...
VIS006

3000.40316582

reflectance

(continues on next page)

2.6. Quickstart

19

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

(continued from previous page)

polarization: None
level: None
modifiers: O

ancillary_variables: []

Satpy allows loading file data by wavelengths in micrometers (shown above) or by channel name:

[>>> global_scene.load(["VIS008", "IR_016", "IR_108"1)]

To have a look at the available channels for loading from your Scene object use the available_dataset_names()
method:

>>> global_scene.available_dataset_names()
['HRV',
'TR_108',
'"IR_120",
'VIS006',
'WV_062",
'IR_039',
'TR_134",
'TIR_097',
'"IR_087",
'VIS008',
'IR_016',
'"WV_073"]

To access the loaded data use the wavelength or name:

[>>> print(global_scene[0.8])]

For more information on loading datasets by resolution, calibration, or other advanced loading methods see the Reading
documentation.

2.6.2 Calculating measurement values and navigation coordinates

Once loaded, measurement values can be calculated from a DataArray within a scene, using .values to get a fully
calculated numpy array:

>>> vis®08_meas = vis008.values

>>> vis008 = global_scene["VIS008"] ’

Note that for very large images, such as half-kilometer geostationary imagery, calculated measurement arrays may
require multiple gigabytes of memory; using deferred computation and/or subsetting of datasets may be preferred in
such cases.

The ‘area’ attribute of the DataArray, if present, can be converted to latitude and longitude arrays. For some instruments
(typically polar-orbiters), the get_lonlats() may result in arrays needing an additional .compute() or .values extraction.

[>>> vis®08_lon, vis®08_lat = vis®08.attrs['area'].get_lonlats() J

20 Chapter 2. Documentation

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.6.3 Visualizing data

To visualize loaded data in a pop-up window:

[>>> global_scene.show(0.8)]

Alternatively if working in a Jupyter notebook the scene can be converted to a geoviews object using the
to_geoviews () method. The geoviews package is not a requirement of the base satpy install so in order to use this
feature the user needs to install the geoviews package himself.

>>> import holoviews as hv

>>> import geoviews as gv

>>> import geoviews.feature as gf

>>> gv.extension('"bokeh", "matplotlib")

>>> %opts QuadMesh Image [width=600 height=400 colorbar=True] Feature [apply_
—ranges=False]

>>> %opts Image QuadMesh (cmap='RdBu_r')

>>> gview = global_scene.to_geoviews(vdims=[0.6])

>>> gview[::5,::5] * gf.coastline * gf.borders

2.6.4 Creating new datasets

Calculations based on loaded datasets/channels can easily be assigned to a new dataset:

>>> global_scene.load(['VIS006', 'VISO08'])

>>> global_scene["ndvi"] = (global_scene['VIS008'] - global_scene['VIS006']) / (global_
—.scene['VIS008'] + global_scene['VIS006'])

>>> global_scene.show("ndvi™)

When doing calculations Xarray, by default, will drop all attributes so attributes need to be copied over by hand. The
combine_metadata() function can assist with this task. Assigning additional custom metadata is also possible.

>>> from satpy.dataset import combine_metadata

>>> scene['new_band'] = scene['VIS008'] / scene['VIS006']

>>> scene['new_band'].attrs = combine_metadata(scene['VIS008'], scene['VIS006'])
>>> scene['new_band'].attrs['some_other_key'] = 'whatever_value_you_want'

2.6.5 Generating composites

Satpy comes with many composite recipes built-in and makes them loadable like any other dataset:

[>>> global_scene.load(['overview'])]

To get a list of all available composites for the current scene:

>>> global_scene.available_composite_names()
['overview_sun',

'airmass',

'natural_color',

'night_fog',

'overview',

'green_snow',

(continues on next page)

2.6. Quickstart 21

https://geoviews.org

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

(continued from previous page)
'dust’,
'fog',
'natural_color_raw',
'cloudtop’,
'convection',
'ash']

Loading composites will load all necessary dependencies to make that composite and unload them after the composite
has been generated.

Note: Some composite require datasets to be at the same resolution or shape. When this is the case the Scene object
must be resampled before the composite can be generated (see below).

2.6.6 Resampling

In certain cases it may be necessary to resample datasets whether they come from a file or are generated composites.
Resampling is useful for mapping data to a uniform grid, limiting input data to an area of interest, changing from
one projection to another, or for preparing datasets to be combined in a composite (see above). For more details on
resampling, different resampling algorithms, and creating your own area of interest see the Resampling documentation.
To resample a Satpy Scene:

[>>> local_scene = global_scene.resample("eurol") J

This creates a copy of the original global_scene with all loaded datasets resampled to the built-in “eurol” area. Any
composites that were requested, but could not be generated are automatically generated after resampling. The new
local_scene can now be used like the original global_scene for working with datasets, saving them to disk or
showing them on screen:

>>> local_scene.show('overview')
>>> local_scene.save_dataset('overview', './local_overview.tif')

2.6.7 Saving to disk

To save all loaded datasets to disk as geotiff images:

[>>> global_scene.save_datasets()]

To save all loaded datasets to disk as PNG images:

[>>> global_scene.save_datasets(writer="simple_image')]

Or to save an individual dataset:

[>>> global_scene.save_dataset('VIS006', 'my_nice_image.png')]

Datasets are automatically scaled or “enhanced” to be compatible with the output format and to provide the best looking
image. For more information on saving datasets and customizing enhancements see the documentation on Writing.

22 Chapter 2. Documentation

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.6.8 Slicing and subsetting scenes

Array slicing can be done at the scene level in order to get subsets with consistent navigation throughout. Note that this
does not take into account scenes that may include channels at multiple resolutions, i.e. index slicing does not account
for dataset spatial resolution.

>>> scene_slice = global_scene[2000:2004, 2000:2004]

>>> vis006_slice = scene_slice['VIS006']

>>> visQ06_slice_meas = vis®06_slice.values

>>> vis@06_slice_lon, vis006_slice_lat = vis@O06_slice.attrs['area'].get_lonlats()

To subset multi-resolution data consistently, use the crop () method.

>>> scene_llbox = global_scene.crop(ll_bbox=(-4.0, -3.9, 3.9, 4.0))

>>> vis006_l1lbox = scene_llbox['VIS006']

>>> vis006_llbox_meas = vis006_llbox.values

>>> vis006_llbox_lon, vis006_llbox_lat = vis006_llbox.attrs['area'].get_lonlats()

2.6.9 Troubleshooting

When something goes wrong, a first step to take is check that the latest Version of satpy and its dependencies are in-
stalled. Satpy drags in a few packages as dependencies per default, but each reader and writer has it’s own dependencies
which can be unfortunately easy to miss when just doing a regular pip install. To check the missing dependencies for
the readers and writers, a utility function called check_satpy () can be used:

>>> from satpy.utils import check_satpy
>>> check_satpy()

Due to the way Satpy works, producing as many datasets as possible, there are times that behavior can be unexpected
but with no exceptions raised. To help troubleshoot these situations log messages can be turned on. To do this run the
following code before running any other Satpy code:

>>> from satpy.utils import debug_on
>>> debug_on()

2.7 Reading

Satpy supports reading and loading data from many input file formats and schemes through the concept of readers. Each
reader supports a specific type of input data. The Scene object provides a simple interface around all the complexity of
these various formats through its 1oad method. The following sections describe the different way data can be loaded,
requested, or added to a Scene object.

2.7. Reading 23

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.7.1 Available Readers

For readers currently available in Satpy see Satpy Readers. Additionally to get a list of available readers you can
use the available_readers function. By default, it returns the names of available readers. To return additional reader
information use available_readers(as_dict=True):

>>> from satpy import available_readers
>>> available_readers()

2.7.2 Filter loaded files

Coming soon...

2.7.3 Load data

Datasets in Satpy are identified by certain pieces of metadata set during data loading. These include name, wavelength,
calibration, resolution, polarization, and modifiers. Normally, once a Scene is created requesting datasets by name or
wavelength is all that is needed:

>>> from satpy import Scene

>>> scn = Scene(reader="seviri_llb_hrit", filenames=filenames)
>>> scn.load([0.6, 0.8, 10.8])

>>> scn.load(['IR_120"', "IR_134'])

However, in many cases datasets are available in multiple spatial resolutions, multiple calibrations
(brightness_temperature, reflectance, radiance, etc), multiple polarizations, or have corrections or
other modifiers already applied to them. By default Satpy will provide the version of the dataset with the highest
resolution and the highest level of calibration (brightness temperature or reflectance over radiance). It is also possible
to request one of these exact versions of a dataset by using the DataQuery class:

>>> from satpy import DataQuery

>>> my_channel_id = DataQuery(name='IR_016', calibration='radiance')
>>> scn.load([my_channel_id])

>>> print(scn['IR_016'])

Or request multiple datasets at a specific calibration, resolution, or polarization:

[>>> scn.load([0.6, 0.8], resolution=1000)]

Or multiple calibrations:

[>>> scn.load([0.6, 10.8], calibration=['brightness_temperature', 'radiance']) J

In the above case Satpy will load whatever dataset is available and matches the specified parameters. So the above
load call would load the 8. 6 (a visible/reflectance band) radiance data and 10. 8 (an IR band) brightness temperature
data.

For geostationary satellites that have the individual channel data separated to several files (segments) the missing seg-
ments are padded by default to full disk area. This is made to simplify caching of resampling look-up tables (see
Resampling for more information). To disable this, the user can pass pad_data keyword argument when loading
datasets:

24 Chapter 2. Documentation

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

[>>>

scn.load([0.6, 10.8], pad_data=False)

]

For geostationary products, where the imagery is stored in the files in an unconventional orientation (e.g. MSG SE-
VIRI L1.5 data are stored with the southwest corner in the upper right), the keyword argument upper_right_corner
can be passed into the load call to automatically flip the datasets to the wished orientation. Accepted argu-
ment values are 'NE', 'NW', 'SE', 'SW', and 'native'. By default, no flipping is applied (corresponding to
upper_right_corner="native') and the data are delivered in the original format. To get the data in the common
upright orientation, load the datasets using e.g.:

[>>>

scn.load(['VISO08'], upper_right_corner='NE")

Note: If a dataset could not be loaded there is no exception raised. You must check the scn.missing_datasets
property for any DataID that could not be loaded.

To find out what datasets are available from a reader from the files that were provided to the Scene use
available_dataset_ids():

[>>>

scn.available_dataset_ids()

Or available_dataset_names() for just the string names of Datasets:

[>>>

scn.available_dataset_names()

2.7.4 Load remote data

Starting with Satpy version 0.25.1 with supported readers it is possible to load data from remote file systems like s3fs
or fsspec. For example:

>>>

>>>

>>>

>>>

>>>

>>>

>>>
>>>

from satpy import Scene

from satpy.readers import FSFile

import fsspec

filename = 'noaa-goesl6/ABI-L1b-RadC/2019/001/17/*_G16_s20190011702186*"
the_files = fsspec.open_files("simplecache::s3://" + filename, s3={'anon': True})

fs_files = [FSFile(open_file) for open_file in the_files]

scn = Scene(filenames=fs_files, reader="abi_11b")
scn.load(['true_color_raw'])

Check the list of Satpy Readers to see which reader supports remote files. For the usage of fsspec and advanced
features like caching files locally see the fsspec Documentation .

2.7.

Reading 25

https://filesystem-spec.readthedocs.io/en/latest

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.7.5 Search for local/remote files

Satpy provides a utility find_files_and_readers() for searching for files in a base directory matching various
search parameters. This function discovers files based on filename patterns. It returns a dictionary mapping reader
name to a list of filenames supported. This dictionary can be passed directly to the Scene initialization.

>>> from satpy import find_files_and_readers, Scene

>>> from datetime import datetime

>>> my_files = find_files_and_readers(base_dir="'/data/viirs_sdrs',
reader="viirs_sdr',
start_time=datetime(2017, 5, 1, 18, 1, 0),
SaC end_time=datetime(2017, 5, 1, 18, 30, 0))
>>> scn = Scene(filenames=my_files)

See the find_files_and_readers () documentation for more information on the possible parameters as well as for
searching on remote file systems.

2.7.6 Metadata

The datasets held by a scene also provide vital metadata such as dataset name, units, observation time etc. The following
attributes are standardized across all readers:

* name, and other identifying metadata keys: See Satpy internal workings: having a look under the hood.

e start_time: Left boundary of the time interval covered by the dataset. For more information see the Time
Metadata section below.

e end_time: Right boundary of the time interval covered by the dataset. For more information see the 7ime
Metadata section below.

e area: AreaDefinition or SwathDefinition if data is geolocated. Areas are used for gridded projected
data and Swaths when data must be described by individual longitude/latitude coordinates. See the Coordinates
section below.

* reader: The name of the Satpy reader that produced the dataset.

e orbital_parameters: Dictionary of orbital parameters describing the satellite’s position. See the Orbital
Parameters section below for more information.

e time_parameters: Dictionary of additional time parameters describing the time ranges related to the requests
or schedules for when observations should happen and when they actually do. See Time Metadata below for
details.

* raw_metadata: Raw, unprocessed metadata from the reader.

Note that the above attributes are not necessarily available for each dataset.

Time Metadata

In addition to the generic start_time and end_time pieces of metadata there are other time fields that may be
provided if the reader supports them. These items are stored in a time_parameters sub-dictionary and they include
values like:

* observation_start_time: The point in time when a sensor began recording for the current data.

* observation_end_time: Same as observation_start_time, but when data has stopped being recorded.

26 Chapter 2. Documentation

https://pyresample.readthedocs.io/en/stable/api/pyresample.html#pyresample.geometry.AreaDefinition
https://pyresample.readthedocs.io/en/stable/api/pyresample.html#pyresample.geometry.SwathDefinition

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

e nominal_start_time: The “human friendly” time describing the start of the data observation interval or repeat
cycle. This time is often on a round minute (seconds=0). Along with the nominal end time, these times define
the regular interval of the data collection. For example, GOES-16 ABI full disk images are collected every 10
minutes (in the common configuration) sonominal_start_time and nominal_end_time would be 10 minutes
apart regardless of when the instrument recorded data inside that interval. This time may also be referred to as
the repeat cycle, repeat slot, or time slot.

e nominal_end_time: Same as nominal_start_time, but the end of the interval.

In general, start_time and end_time will be set to the “nominal” time by the reader. This ensures that other Satpy
components get a consistent time for calculations (ex. generation of solar zenith angles) and can be reused between
bands.

See the Coordinates section below for more information on time information that may show up as a per-element/row
“coordinate” on the DataArray (ex. acquisition time) instead of as metadata.

Orbital Parameters

Orbital parameters describe the position of the satellite. As such they typically come in a few “flavors” for the common
types of orbits a satellite may have.

For geostationary satellites it is described using the following scalar attributes:

e satellite_actual_longitude/latitude/altitude: Current position of the satellite at the time of obser-
vation in geodetic coordinates (i.e. altitude is relative and normal to the surface of the ellipsoid). The longitude
and latitude are given in degrees, the altitude in meters.

* satellite_nominal_longitude/latitude/altitude: Center of the station keeping box (a confined area
in which the satellite is actively maintained in using maneuvers). Inbetween major maneuvers, when the satellite
is permanently moved, the nominal position is constant. The longitude and latitude are given in degrees, the
altitude in meters.

* nadir_longitude/latitude: Intersection of the instrument’s Nadir with the surface of the earth. May differ
from the actual satellite position, if the instrument is pointing slightly off the axis (satellite, earth-center). If
available, this should be used to compute viewing angles etc. Otherwise, use the actual satellite position. The
values are given in degrees.

e projection_longitude/latitude/altitude: Projection center of the re-projected data. This should be
used to compute lat/lon coordinates. Note that the projection center can differ considerably from the actual
satellite position. For example MSG-1 was at times positioned at 3.4 degrees west, while the image data was
re-projected to 0 degrees. The longitude and latitude are given in degrees, the altitude in meters.

Note: For use in pyorbital, the altitude has to be converted to kilometers, see for example pyorbital.orbital.
get_observer_look().

For polar orbiting satellites the readers usually provide coordinates and viewing angles of the swath as ancillary
datasets. Additional metadata related to the satellite position includes:

e tle: Two-Line Element (TLE) set used to compute the satellite’s orbit

2.7. Reading 27

https://pyorbital.readthedocs.io/en/stable/index.html#pyorbital.orbital.get_observer_look
https://pyorbital.readthedocs.io/en/stable/index.html#pyorbital.orbital.get_observer_look

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

2.7.7 Coordinates

Each DataArray produced by Satpy has several Xarray coordinate variables added to them.

* x and y: Projection coordinates for gridded and projected data. By default y and x are the preferred dimensions
for all 2D data, but these coordinates are only added for gridded (non-swath) data. For 1D data only the y
dimension may be specified.

e crs: A CRS object defined the Coordinate Reference System for the data. Requires pyproj 2.0 or later to be
installed. This is stored as a scalar array by Xarray so it must be accessed by doing crs = my_data_arr.
attrs['crs'].item(). For swath data this defaults to a longlat CRS using the WGS84 datum.

* longitude: Array of longitude coordinates for swath data.
* latitude: Array of latitude coordinates for swath data.

Readers are free to define any coordinates in addition to the ones above that are automatically added. Other possible
coordinates you may see:

e acq_time: Instrument data acquisition time per scan or row of data.

2.7.8 Adding a Reader to Satpy

This is described in the developer guide, see Adding a Custom Reader to Satpy.

2.7.9 Implemented readers

SEVIRI L1.5 data readers

Common functionality for SEVIRI L1.5 data readers.

Introduction

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) is the primary instrument on Meteosat Second Gener-
ation (MSG) and has the capacity to observe the Earth in 12 spectral channels.

Level 1.5 corresponds to image data that has been corrected for all unwanted radiometric and geometric effects, has
been geolocated using a standardised projection, and has been calibrated and radiance-linearised. (From the EU-
METSAT documentation)

Satpy provides the following readers for SEVIRI L1.5 data in different formats:
e Native: satpy.readers.seviri_l1lb_native
e HRIT: satpy.readers.seviri_l1b_hrit

e netCDF: satpy.readers.seviri_l1lb_nc

28 Chapter 2. Documentation

https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pyproj4.github.io/pyproj/dev/api/crs/crs.html#pyproj.crs.CRS

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

Calibration

This section describes how to control the calibration of SEVIRI L1.5 data.

Calibration to radiance

The SEVIRI L1.5 data readers allow for choosing between two file-internal calibration coefficients to convert counts
to radiances:

¢ Nominal for all channels (default)
* GSICS where available (IR currently) and nominal for the remaining channels (VIS & HRV currently)

In order to change the default behaviour, use the reader_kwargs keyword argument upon Scene creation:

import satpy

scene = satpy.Scene(filenames=filenames,
reader="seviri_llb_...",
reader_kwargs={'calib_mode': "'GSICS'})

scene.load(['VISO06', "IR_108'])

In addition, two other calibration methods are available:

1. It is possible to specify external calibration coefficients for the conversion from counts to radiances. External
coefficients take precedence over internal coefficients and over the Meirink coefficients, but you can also mix
internal and external coefficients: If external calibration coefficients are specified for only a subset of channels, the
remaining channels will be calibrated using the chosen file-internal coefficients (nominal or GSICS). Calibration
coeflicients must be specified in [mMW m-2 sr-1 (cm-1)-1].

2. The calibration mode meirink-2023 uses coefficients based on an intercalibration with Aqua-MODIS for the
visible channels, as found in Inter-calibration of polar imager solar channels using SEVIRI (2013) by J. F.
Meirink, R. A. Roebeling, and P. Stammes.

In the following example we use external calibration coefficients for the VISO06 & IR_108 channels, and nominal
coeflicients for the remaining channels:

coefs = {'VISO06': {'gain': 0.0236, 'offset': -1.20},
'"IR_108': {'gain': 0.2156, 'offset': -10.4}}
scene = satpy.Scene(filenames,
reader="seviri_1l1lb_...",
reader_kwargs={'ext_calib_coefs': coefs})
scene.load(['VIS006', 'VISO08', 'IR_108', 'IR_120'])

In the next example we use external calibration coeflicients for the VISO06 & IR_108 channels, GSICS coefficients
where available (other IR channels) and nominal coefficients for the rest:

coefs = {'VISO06': {'gain': 0.0236, 'offset': -1.20},
'IR_108': {'gain': 0.2156, 'offset': -10.4}}
scene = satpy.Scene(filenames,
reader="seviri_1l1lb_...",
reader_kwargs={'calib_mode': 'GSICS',
'ext_calib_coefs': coefs})
scene.load(['VISO06', 'VISOO8', 'IR_108', 'IR_120'])

In the next example we use the mode meirink-2023 calibration coefficients for all visible channels and nominal
coeflicients for the rest:

2.7. Reading 29

http://dx.doi.org/10.5194/amt-6-2495-2013

Satpy Documentation, Release 0.45.1.dev0+ge338294dd.d20231129

scene = satpy.Scene(filenames,
reader="seviri_l1lb_...",
reader_kwargs={'calib_mode': 'meirink-2023'})
scene.load(['VIS006', 'VISO08', 'IR_016'])

Calibration to reflectance

When loading solar channels, the SEVIRI L1.5 data readers apply a correction for the Sun-Earth distance variation
throughout the year - as recommended by the EUMETSAT document Conversion from radiances to reflectances for
SEVIRI warm channels. In the unlikely situation that this correction is not required, it can be removed on a per-channel
basis using satpy.readers.utils.remove_earthsun_distance_correction().

Masking of bad quality scan lines

By default bad quality scan lines are masked and replaced with np . nan for radiance, reflectance and brightness temper-
ature calibrations based on the quality flags provided by the data (for details on quality flags see MSG Level 1.5 Image
Data Format Description page 109). To disable masking reader_kwargs={'mask_bad_quality_scan_lines"':
False} can be passed to the Scene.

Metadata

The SEVIRI L1.5 readers provide the following metadata:

e The orbital_parameters attribute provides the nominal and actual satellite position, as well as the projection
centre. See the Metadata section in the Reading chapter for more information.

* The acq_time coordinate provides the mean acquisition time f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>